15км/ч
Объяснение:
(t-1) - время, затраченное по течению;
t - время, затраченное против течения;
(v+1) - скорость катера по течению;
(v-1) - скорость катера против течения.
Составляет систему уравнений:
(t-1)(v+1)=112
t(v-1)=112
(t-1)(v+1)-t(v-1)=112-112
tv+t-v-1-tv+t=0
tv-tv+t+t-v-1=0
2t-v-1=0
2t-v=1
v=2t-1
t(2t-1-1)=112
2t^2 -2t=112
2(t^2 -t)=112
t^2 -t=112/2
t^2 -t=56
t^2 -t-56=0
D=1^2 -4×1×(-56)=1+224=225
t1=(-(-1)+√225)/(2×1)=(1+15)/2=16/2=8ч
t2=(1-15)/2= -14/2= -7
Отсюда следует, что время, затраченное против течения, составляет 8 часов.
8(v-1)=112
v-1=112/8
v=14+1=15км/ч - скорость катера.
Имеем уравнение вида
f(x)=g(x), где
f(x)=cos (πx); g(x)=x²-4x+5
Решаем графически.
f(x)= сos(πx) - ограниченная функция,её наибольшее значение равно 1.
g(x)=x²-4x+5 принимает наименьшее значение, равное 1при х=2.
х=2- единственный корень уравнения.
Проверка.
cos(2π)=2²-4·2+5
1=1- верно.
О т в е т. х=2
б)cos(cosx)=1
cos x=2πn, n∈ Z
Но так как у= сosx - ограниченная функция,
-1≤ cosx ≤1, то
-1≤ 2πn≤1, n∈ Z
Этому неравенству удовлетворяет единственное значение n=0.
Решаем уравнение
cosx=0
x=(π/2) + πk, k∈Z.
О т в е т. x=(π/2) + πk, k∈Z.
15км/ч
Объяснение:
(t-1) - время, затраченное по течению;
t - время, затраченное против течения;
(v+1) - скорость катера по течению;
(v-1) - скорость катера против течения.
Составляет систему уравнений:
(t-1)(v+1)=112
t(v-1)=112
(t-1)(v+1)-t(v-1)=112-112
tv+t-v-1-tv+t=0
tv-tv+t+t-v-1=0
2t-v-1=0
2t-v=1
v=2t-1
t(2t-1-1)=112
2t^2 -2t=112
2(t^2 -t)=112
t^2 -t=112/2
t^2 -t=56
t^2 -t-56=0
D=1^2 -4×1×(-56)=1+224=225
t1=(-(-1)+√225)/(2×1)=(1+15)/2=16/2=8ч
t2=(1-15)/2= -14/2= -7
Отсюда следует, что время, затраченное против течения, составляет 8 часов.
8(v-1)=112
v-1=112/8
v=14+1=15км/ч - скорость катера.