Докажем, что все члены последовательности лежат в пределах [3/2;2]. x_1 там лежит; пусть для некоторого n выполнено 3/2≤x_n≤2; тогда 1/2≤1/x_n≤2/3⇒3/2≤1+(1/x_n)≤5/3<2⇒3/2≤x_(n+1)≤2; тем самым методом математической индукции утверждение доказано для всех членов последовательности.
Далее, оценим разность между соседними членами последовательности:
Сначала всё обозначим: ширина бассейна по условию х; длина бассейна х+6; ширина прямоугольника,в котором находится бассейн, х + 1 (добавилось по 0,5 м с каждой стороны за счёт дорожки); длина этого же прямоугольника х + 7 (также добавилось по 0,5 м с двух сторон за счёт дорожки). Дальше из площади большого прямоугольника вычитаем площадь малого(бассейн) и получаем разницу 15 кв.метров - площадь всей дорожки по условию: (x+7) *(x+1) - (x+6) * x = 15 x^2 + x + 7x - x^2 - 6x = 15 2x=8 x=4(ширина бас.); 4+6=10 (длина бас.).
x_1 там лежит; пусть для некоторого n выполнено 3/2≤x_n≤2;
тогда 1/2≤1/x_n≤2/3⇒3/2≤1+(1/x_n)≤5/3<2⇒3/2≤x_(n+1)≤2; тем самым методом математической индукции утверждение доказано для всех членов последовательности.
Далее, оценим разность между соседними членами последовательности:
|x_(n+1) - x_n|=|1+(1/x_n) - 1 - (1/x_(n-1))|=|x_(n-1) - x_n|/(x_n·x_(n-1))≤
|x_(n-1) - x_n|/(3/2)^2
Отсюда следует сходимость последовательности.
Предел A последовательности теперь ищется элементарно. Для этого нужно перейти к пределу в равенстве x_(n+1)=1+(1/x_n):
A=1+(1/A); A^2-A-1=0; A=(1+√5)/2 (отрицательный корень отбросили, поскольку A>0
[2A]=[1+√5]=3
ответ: 3
ширина бассейна по условию х;
длина бассейна х+6;
ширина прямоугольника,в котором находится бассейн, х + 1 (добавилось по 0,5 м с каждой стороны за счёт дорожки);
длина этого же прямоугольника х + 7 (также добавилось по 0,5 м с двух сторон за счёт дорожки).
Дальше из площади большого прямоугольника вычитаем площадь малого(бассейн) и получаем разницу 15 кв.метров - площадь всей дорожки по условию:
(x+7) *(x+1) - (x+6) * x = 15
x^2 + x + 7x - x^2 - 6x = 15 2x=8 x=4(ширина бас.); 4+6=10 (длина бас.).