1) Обозначим искомую линейную функцию у = kx +b. По условию её график параллелен прямой y=2x+11, следовательно угловые коэффициенты этих функций равны => k = 2 => искомая функция принимает вид у = 2x +b. 2) По условию график искомой функции пересекается с графиком y=x-3 в точке, лежащей на оси ординат, значит функции у = 2x +b, y=x-3 и ось ординат OY, которая задается формулой x = 0 пересекаются в одной точке. Решаем систему: у = 2x +b y=x-3 x = 0
Получаем: b = - 3. T.о. искомая функция имеет вид: у = 2x - 3
2) По условию график искомой функции пересекается с графиком y=x-3 в точке, лежащей на оси ординат, значит функции у = 2x +b, y=x-3 и ось ординат OY, которая задается формулой x = 0 пересекаются в одной точке.
Решаем систему:
у = 2x +b
y=x-3
x = 0
Получаем: b = - 3.
T.о. искомая функция имеет вид: у = 2x - 3
55 (км/час) - скорость первого автомобиля
75 (км/час) - скорость второго автомобиля
Объяснение:
х - скорость первого автомобиля
х+20 - скорость второго автомобиля
206,25/х - время первого автомобиля
206,25/(х+20) - время второго автомобиля
По условию задачи разница во времени 1 час, уравнение:
206,25/х - 206,25/(х+20) = 1
Избавляемся от дробного выражения, общий знаменатель х(х+20), надписываем над числителями дополнительные множители:
206,25(х+20) - 206,25*х=1*х(х+20)
206,25х+4125-206,25х=х²+20х
-х²-20х+4125=0
х²+20х-4125=0, квадратное уравнение, ищем корни:
х₁,₂=(-20±√400+16500)/2
х₁,₂=(-20±√16900)/2
х₁,₂=(-20±130)/2
х₁= -75 отбрасываем, как отрицательный
х₂=110/2=55 (км/час) - скорость первого автомобиля
55+20=75 (км/час) - скорость второго автомобиля
Проверка:
206,25 : 55 = 3,75 (часа) время первого автомобиля
206,25 : 75 = 2,75 (часа) время второго автомобиля
Разница 1 час, всё верно.