Координаты точки пересечения можно найти методом вычитания:
а) чтобы найти переменную , достаточно вычесть от верхней части системы нижнюю, тогда получится , найдем координату , подставим значение х в любую часть системы: , следовательно точка пересечения этих прямых будет находится по координатам
б) , искомый ответ будет
в) тут возникает противоречие, если прямые вычесть, то мы не сможем найти или , или же будет , что не является верным, значит прямые не будут пересекаться, они являются параллельными
г) тут уже можно сразу найти , искомый ответ будет
ответ: а), б), в)Нет решения, г)
Примечание: Если в г была система такая , то это это две прямые, которые совпадают и ответом будет бесконечное множество.
Линейное уравнение – уравнение, сводящееся к виду ax+b=0, где a≠0,b – числа. Линейное уравнение всегда имеет единственное решение x=−ba. Квадратное уравнение – уравнение, сводящееся к виду ax2+bx+c=0, где a≠0,b,c – числа. Выражение D=b2−4ac называется дискриминантом квадратного уравнения. Квадратное уравнение может иметь не более двух корней: ∙ если D>0, то оно имеет два различных корня и x1=−b+D2aиx2=−b−D2a ∙ если D=0, то оно имеет один корень (иногда говорят, что два совпадающих) x1=x2=−b2a ∙ если D<0, то оно не имеет корней. ▸ Теорема Виета для квадратного уравнения: Если квадратное уравнение имеет неотрицательный дискриминант, то сумма корней уравнения x1+x2=−ba а произведение x1⋅x2=ca ▸ Если квадратное уравнение: ∼ имеет два корня x1 и x2, то ax2+bx+c=a(x−x1)(x−x2). ∼ имеет один корень x1 (иногда говорят, что два совпадающих), то ax2+bx+c=a(x−x1)2. ∼ не имеет корней, то квадратный трехчлен ax2+bc+c никогда не может быть равен нулю. Более того, он при всех x строго одного знака: либо положителен, либо отрицателен. ▸ Полезные формулы сокращенного умножения: x2−y2=(x−y)(x+y)(x+y)2=x2+2xy+y2(x−y)2=x2−2xy+y2 Ознакомиться с полной теорией
Объяснение:
Координаты точки пересечения можно найти методом вычитания:
а) чтобы найти переменную , достаточно вычесть от верхней части системы нижнюю, тогда получится , найдем координату , подставим значение х в любую часть системы: , следовательно точка пересечения этих прямых будет находится по координатам
б) , искомый ответ будет
в) тут возникает противоречие, если прямые вычесть, то мы не сможем найти или , или же будет , что не является верным, значит прямые не будут пересекаться, они являются параллельными
г) тут уже можно сразу найти , искомый ответ будет
ответ: а), б), в)Нет решения, г)
Примечание: Если в г была система такая , то это это две прямые, которые совпадают и ответом будет бесконечное множество.
Объяснение:
Линейное уравнение – уравнение, сводящееся к виду ax+b=0, где a≠0,b – числа. Линейное уравнение всегда имеет единственное решение x=−ba. Квадратное уравнение – уравнение, сводящееся к виду ax2+bx+c=0, где a≠0,b,c – числа. Выражение D=b2−4ac называется дискриминантом квадратного уравнения. Квадратное уравнение может иметь не более двух корней: ∙ если D>0, то оно имеет два различных корня и x1=−b+D2aиx2=−b−D2a ∙ если D=0, то оно имеет один корень (иногда говорят, что два совпадающих) x1=x2=−b2a ∙ если D<0, то оно не имеет корней. ▸ Теорема Виета для квадратного уравнения: Если квадратное уравнение имеет неотрицательный дискриминант, то сумма корней уравнения x1+x2=−ba а произведение x1⋅x2=ca ▸ Если квадратное уравнение: ∼ имеет два корня x1 и x2, то ax2+bx+c=a(x−x1)(x−x2). ∼ имеет один корень x1 (иногда говорят, что два совпадающих), то ax2+bx+c=a(x−x1)2. ∼ не имеет корней, то квадратный трехчлен ax2+bc+c никогда не может быть равен нулю. Более того, он при всех x строго одного знака: либо положителен, либо отрицателен. ▸ Полезные формулы сокращенного умножения: x2−y2=(x−y)(x+y)(x+y)2=x2+2xy+y2(x−y)2=x2−2xy+y2 Ознакомиться с полной теорией