Y = - x² - 3x + 1 - квадратичная функция. Графиком этой функции является парабола, ветви направлены вниз. Вершину параболы будем искать следующим образом:
Раскрываем знак модуля. Если 2х-у≥0, то первое уравнение принимает вид: х²+2х+у²+4у=4·(2х-у) (х-3)²+(у+4)²=5² уравнение окружности с центром в точке (3;-4) и радиусом 5
Если 2х-у<0, то первое уравнение принимает вид: х²+2х+у²+4у=-4·(2х-у) (х+5)²+у=5²уравнение окружности с центром в точке (-5;0) и радиусом 5
Прямая х+2у=а и граница областей 2х-y=0 взаимно перпендикулярны: их угловые коэффициенты (-1/2) и 2, произведение угловых коэффициентов равно -1.
Напишем уравнения прямой, параллельной прямой 2х-у=0 и проходящей через центр окружности (-5;0) 2х-у+с=0; 2·(-5)-0+с=0; с=10
Найдем точки пересечения прямой 2х-у+10=0 с окружностью (х+5)²+у²=25 (х+5)²+(2х+10)²=25 (х+5)²+4(х+5)²=25 5(х+5)²=25 (х+5)²=5 х₁=-5-√5 или х₂=-5+√5 у₁=2х₁+10=-2√5 у₂=2√5
Напишем уравнение прямой, параллельной прямой х+2у=а и проходящей через точку (-5-√5; -2√5) -5-√5-4√5=а ⇒а=-5-5√5 х+2у=-5-5√5 - на графике зеленая прямая
Напишем уравнение прямой, параллельной прямой х+2у=а и проходящей через точку (-5+√5; 2√5) -5+√5+4√5=а ⇒а=-5+5√5 х+2у=-5+5√5 - на графике синяя прямая
Прямые, расположенные между ними имеют с окружностями более двух точек пересечения. О т в е т. -5-5√5<a<-5+5√5
m = -b/2a = - (-3)/2*(-1) = -1,5 - координата абсциссы.
Подставим теперь в функцию
y = - (-1.5)² - 3 * (-1.5) + 1 = 3,25
(-1.5; 3.25) - координаты вершины параболы.
у = х+5 - линейная функция. Графиком линейной функции является прямая, которая проходит через точки (0;5), (-5;0)
Графики пересекаются в точке (-2;3), где x=-2 и y=3 - решения системы уравнения
Если 2х-у≥0, то первое уравнение принимает вид:
х²+2х+у²+4у=4·(2х-у)
(х-3)²+(у+4)²=5² уравнение окружности с центром в точке (3;-4) и радиусом 5
Если 2х-у<0, то первое уравнение принимает вид:
х²+2х+у²+4у=-4·(2х-у)
(х+5)²+у=5²уравнение окружности с центром в точке (-5;0) и радиусом 5
Прямая х+2у=а и граница областей 2х-y=0 взаимно перпендикулярны:
их угловые коэффициенты (-1/2) и 2, произведение угловых коэффициентов равно -1.
Напишем уравнения прямой, параллельной прямой 2х-у=0 и проходящей через центр окружности (-5;0)
2х-у+с=0;
2·(-5)-0+с=0;
с=10
Найдем точки пересечения прямой 2х-у+10=0 с окружностью
(х+5)²+у²=25
(х+5)²+(2х+10)²=25
(х+5)²+4(х+5)²=25
5(х+5)²=25
(х+5)²=5
х₁=-5-√5 или х₂=-5+√5
у₁=2х₁+10=-2√5 у₂=2√5
Напишем уравнение прямой, параллельной прямой х+2у=а и проходящей через точку (-5-√5; -2√5)
-5-√5-4√5=а ⇒а=-5-5√5
х+2у=-5-5√5 - на графике зеленая прямая
Напишем уравнение прямой, параллельной прямой х+2у=а и проходящей через точку (-5+√5; 2√5)
-5+√5+4√5=а ⇒а=-5+5√5
х+2у=-5+5√5 - на графике синяя прямая
Прямые, расположенные между ними имеют с окружностями более двух точек пересечения.
О т в е т. -5-5√5<a<-5+5√5