Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
rydet
29.10.2022 06:54 •
Алгебра
Решите тригонометрические уравнения: 1. 2cos^2x+3cosx-5=0 2. 6cos^2x-11sinx-10=0 3. sin^2x+7sinx cosx+12cos^2x=0 4. 7tgx-8ctgx+10=0 5. 9cos^2x-sin^2x=8sinx cosx
Показать ответ
Ответ:
Сербина
20.08.2020 12:50
1. 2cos²x + 3cosx - 5 = 0
Пусть t = cosx, t ∈ [-1; 1].
2t² + 3t - 5 = 0
D = 9 + 2•4•5 = 49 = 7²
t1 = (-3 + 7)/4 = 4/4 = 1
t2 = (-3 - 7)/4 = -10/4 = -2,5 - не уд. условию.
Обратная замера:
cosx = 1
x = 2πn, n ∈ Z
2. 6cos²x - 11sinx - 10 = 0
6 - 6sin²x - 11sinx - 10 = 0
-6sin²x - 11sinx - 4 = 0
6sin²x + 11sinx + 4 = 0
Пусть t = sinx, t ∈ Z.
6t² + 11t + 4 = 0
D = 121 - 4•6•4 = 25 = 5²
t1 = (-11 + 5)/12 = -1/2
t2 = (-11 - 5)/12 = -16/12 - не уд. условию.
Обратная замена:
sinx = -1/2
x = (-1)ⁿ+¹π/6 + πn, n ∈ Z.
3. sin²x + 7sinxcosx + 12cos²x = 0
tg²x + 7tgx + 12 = 0
Пусть t = tgx.
t² + 7t + 12 = 0
D = 49 - 48 = 1
t1 = (-7 + 1)/2 = -6/2 = -3
t2 = (-7 - 1)/2= -8/2 = -4
Обратная замена:
tgx = -3
x = arctg(-3) + πn, n ∈ Z
tgx = -4
x = arctg(-4) + πn, n ∈ Z.
4. 7tgx - 8ctgx + 10 = 0
7tgx - 8/tgx + 10 = 0
7tg²x + 10tgx - 8 = 0 (tgx ≠ 0)
Пусть t = tgx.
7t² + 10t - 8 = 0
D = 100 + 4•7•8 = 324 = 18²
t1 = (-10 + 18)/14 = 8/14 = 4/7
t2 = (-10 - 18)/14 = -28/14 = -2
Обратная замена:
tgx = 4/7
x = arctg4/7 + πn, n ∈ Z
tgx = -2
x = arctg(-2) + πn, n ∈ Z.
5. 9cos²x - sin²x = 8sinxcosx
9 - tg²x = 8tgx
tg²x + 8tgx - 9 = 0
Пусть t = tgx.
t² + 8t - 9 = 0
t1 + t2 = -8
t1•t2 = -9
t1 = -9
t2 = 1
Обратная замена:
tgx = -9
x = arctg(-9) + πn, n ∈ Z.
tgx = 1
x = π/4 + πn, n ∈Z.
0,0
(0 оценок)
Популярные вопросы: Алгебра
vuqaredilov2007
27.03.2022 06:35
2. Решить уравнение:а) х(х+3)(x-1) = x=(x+2)б) х + 2x? – 9x – 18 = 0;...
nik6pw
12.02.2022 19:12
Твір як ти провів своє літо на англійській мові з перекладом...
bazroval
27.12.2021 14:35
желательно с пояснением...
maxbas1
10.01.2022 02:04
Алгебра, только один пример не могу понять какой правильный ответ у меня получается...
kroshkaPo
30.10.2022 02:47
Назови коэффициенты a, b и c линейного уравнения с двумя переменными 5x + y – 7 = 0....
josen337
13.04.2020 22:24
Разложение алгебраических выражений на множители с формул сокращённого умножения. Урок3Разложи на множители многочлен 22 - 8pz-z+ 4р+ 1бр2 мне нужен ответ ...
ulpashkova
09.02.2020 19:30
Знайдіть невідомі сторони й кути трикутника АВС , якщоАВ = 14 см, ∠А= 64° , ∠В =45°...
Macsoneo
17.12.2020 02:53
хоть что-нибудь отсюда Преобразуйте в многочлен стандартного вида: (x + 3y)^2 - (2x - 4y)^2 2. Разложите многочлен t^3 + 48t = 12t^2 + 64 на множители и отметьте верный...
mariael10
06.06.2022 01:23
Найдите вероятность того,что при одновременном бросании двух костей произведение выпавших очков будет равно 6....
Обжора228
22.11.2021 19:59
Основные, важные темы по алгербе за 8 класс. скажите...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
Пусть t = cosx, t ∈ [-1; 1].
2t² + 3t - 5 = 0
D = 9 + 2•4•5 = 49 = 7²
t1 = (-3 + 7)/4 = 4/4 = 1
t2 = (-3 - 7)/4 = -10/4 = -2,5 - не уд. условию.
Обратная замера:
cosx = 1
x = 2πn, n ∈ Z
2. 6cos²x - 11sinx - 10 = 0
6 - 6sin²x - 11sinx - 10 = 0
-6sin²x - 11sinx - 4 = 0
6sin²x + 11sinx + 4 = 0
Пусть t = sinx, t ∈ Z.
6t² + 11t + 4 = 0
D = 121 - 4•6•4 = 25 = 5²
t1 = (-11 + 5)/12 = -1/2
t2 = (-11 - 5)/12 = -16/12 - не уд. условию.
Обратная замена:
sinx = -1/2
x = (-1)ⁿ+¹π/6 + πn, n ∈ Z.
3. sin²x + 7sinxcosx + 12cos²x = 0
tg²x + 7tgx + 12 = 0
Пусть t = tgx.
t² + 7t + 12 = 0
D = 49 - 48 = 1
t1 = (-7 + 1)/2 = -6/2 = -3
t2 = (-7 - 1)/2= -8/2 = -4
Обратная замена:
tgx = -3
x = arctg(-3) + πn, n ∈ Z
tgx = -4
x = arctg(-4) + πn, n ∈ Z.
4. 7tgx - 8ctgx + 10 = 0
7tgx - 8/tgx + 10 = 0
7tg²x + 10tgx - 8 = 0 (tgx ≠ 0)
Пусть t = tgx.
7t² + 10t - 8 = 0
D = 100 + 4•7•8 = 324 = 18²
t1 = (-10 + 18)/14 = 8/14 = 4/7
t2 = (-10 - 18)/14 = -28/14 = -2
Обратная замена:
tgx = 4/7
x = arctg4/7 + πn, n ∈ Z
tgx = -2
x = arctg(-2) + πn, n ∈ Z.
5. 9cos²x - sin²x = 8sinxcosx
9 - tg²x = 8tgx
tg²x + 8tgx - 9 = 0
Пусть t = tgx.
t² + 8t - 9 = 0
t1 + t2 = -8
t1•t2 = -9
t1 = -9
t2 = 1
Обратная замена:
tgx = -9
x = arctg(-9) + πn, n ∈ Z.
tgx = 1
x = π/4 + πn, n ∈Z.