Пусть угол KPD - a, угол MNB - b, а угол MPD - c. a=4(b+c)(по условию), b=c(соответственные углы), a+c=180°(смежные углы). Составляем систему: a+b=180° и a=8b => a+b=180° и a=8b => 8b+b=180° и a=8b => 9b=180° и a=8b => b=20° и a=160° ответ: a=160°, b=20°, c=20°.
Если угол C и угол BDC равны 60°, то и угол DBC равен 60°, следовательно, треугольник BDC - равносторонний, а BC и BD равны 5 см. Если угол BDC равен 60°, а угол ABD равен 30°, то угол ADB равен 120° (как смежный с BDC), а угол BAD равен 30°, следовательно, треугольник ABD - равнобедренный, а AD равно 5 см. AC=5 см + 5 см = 10 см ответ: AC=10 см, AD=5 см.
a=4(b+c)(по условию), b=c(соответственные углы), a+c=180°(смежные углы). Составляем систему: a+b=180° и a=8b => a+b=180° и a=8b => 8b+b=180° и a=8b => 9b=180° и a=8b => b=20° и a=160°
ответ: a=160°, b=20°, c=20°.
Если угол C и угол BDC равны 60°, то и угол DBC равен 60°, следовательно, треугольник BDC - равносторонний, а BC и BD равны 5 см. Если угол BDC равен 60°, а угол ABD равен 30°, то угол ADB равен 120° (как смежный с BDC), а угол BAD равен 30°, следовательно, треугольник ABD - равнобедренный, а AD равно 5 см. AC=5 см + 5 см = 10 см
ответ: AC=10 см, AD=5 см.
Строим гиперболу и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)
Область определения:
Подставим у=кх в упрощенную функцию.
(*)
Очевидно, что при k=0 уравнение (*) решений не будет иметь.
1) Если x>0, то и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).
2) Если x<0, то и при k<0 это уравнение решений не имеет.
Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.
Подставим теперь , имеем
Итак, при k=0 и k=±6.25 графики не будут иметь общих точек