В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
pinksuuun
pinksuuun
19.09.2020 11:01 •  Алгебра

Решите уравнение: 2-lg (2x-1)=lg (x-9)

Показать ответ
Ответ:
raufsuleymanov
raufsuleymanov
10.09.2020 12:15
2-lg(2x-1)=lg(x-9)\\\\OD3: \left \{ {{2x-1\ \textgreater \ 0} \atop {x-9\ \textgreater \ 0}} \right. =\ \textgreater \ \left \{ {{2x\ \textgreater \ 1} \atop {x\ \textgreater \ 9}} \right.=\ \textgreater \ \left \{ {{x\ \textgreater \ 0,5} \atop {x\ \textgreater \ 9}} \right. =\ \textgreater \ x\ \textgreater \ 9\\\\2=lg(2x-1)+lg(x-9)\\lg((2x-1)(x-9))=lg100\\(2x-1)(x-9)=100\\
2x^2-x-18x+9=100\\2x^2-19x -91=0\\D=(-19)^2-4*2*(-91)=361+728=1089=33^2\\x_1=(19+33)/4=13\; \; (\ \textgreater \ 9)\\x_2=(19-33)/4=-3,5\; \; (\ \textless \ 9)\\\\x=13
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота