Это очень просто, необходимо только знать таблицу квадратов! Этих чисел в школьной таблице умножения, которую проходят со второго класса, немного - всего 10! Напоминаю:
На самом деле таких чисел очень много и существует огромная таблица квадратов любых чисел, но для решения Вашего задания, требуется именно данная таблица, которую нужно ОБЯЗАТЕЛЬНО запомнить.
Итак, нам дано число и необходимо найти тот промежуток между целыми числами, которому принадлежит данное число. Смотрим в таблицу квадратов. Находим, что находится между и , соответственно, , а . Таким образом, лежит между целыми числами: и
x-x0)^2+(y-y0)^2=r^2 - общий вид. Подаставляем координаты трех точек:
(1-x0)^2+(2-y0)^2=r^2
x0^2+(1+y0)^2=r^2 (***)
(3+x0)^2+y0^2=r^2
приравняем левые части второго и третьего уравнений:
x0^2+(1+y0)^2=(3+x0)^2+y0^2
xo^2+1+2y0+y0^2=9+6x0+x0^2+y0^2
y0-3x0=4 (*)
теперь приравниваем первое и второе:
(1-х0)^2+(2-y0)^2=x0^2=(1+y0)^2
1-2x0+x0^2+4-4y0+y0^2=x0^2+1+2y0+y0^2
x0=2-3y0 (**)
из уравнений (*) и (**) составляем систему и решаем ее:
у0-6+9у0=4
у0=1
х0= -1
находим радиус, подставив в (***):
(-1)^2+(1+1)^2=r^2; r^2=5. Тогда уравнение окружности:
(х+1)^2+(у-1)^2=5
Этих чисел в школьной таблице умножения, которую проходят со второго класса, немного - всего 10! Напоминаю:
На самом деле таких чисел очень много и существует огромная таблица квадратов любых чисел, но для решения Вашего задания, требуется именно данная таблица, которую нужно ОБЯЗАТЕЛЬНО запомнить.
Итак, нам дано число и необходимо найти тот промежуток между целыми числами, которому принадлежит данное число. Смотрим в таблицу квадратов. Находим, что находится между и , соответственно, , а . Таким образом, лежит между целыми числами: и
ответ: