1. Нет. Одночлен - это произведение числовых и буквенных множителей и их степеней.
2. Да
3. Да. Или если точнее, то буквенный множитель (коэффициент) - число, стоящее перед буквой.
4. Да
5. Нет. Коэффициент одночлена - числовой множитель одночлена, записанный в стандартном виде.
6. Да
7. Нет. Подобные одночлены - одночлены, имеющие общий коэффициент.
8. Да
9. Да
10. Да. Если точнее, то одночлены, записанные в стандартном виде, называется многочленом стандартного вида.
11. Нет. Чтобы привести подобные члены, нужно сложить числовые множители и умножить на буквенное выражение.
12. Да
13. Да.
1. Нет. Одночлен - это произведение числовых и буквенных множителей и их степеней.
2. Да
3. Да. Или если точнее, то буквенный множитель (коэффициент) - число, стоящее перед буквой.
4. Да
5. Нет. Коэффициент одночлена - числовой множитель одночлена, записанный в стандартном виде.
6. Да
7. Нет. Подобные одночлены - одночлены, имеющие общий коэффициент.
8. Да
9. Да
10. Да. Если точнее, то одночлены, записанные в стандартном виде, называется многочленом стандартного вида.
11. Нет. Чтобы привести подобные члены, нужно сложить числовые множители и умножить на буквенное выражение.
12. Да
13. Да.
=(a + b - a + b)(a² + 2ab + b²- a² + b² + a² - 2ab + b²) =2b(a² + 3b²).
(применили формулу разности кубов)
2) (2x+y)^3+(x-2y)^3 = (2х + у + х - 2у)((2х +у)² -(2х +у)(х - 2у)+(х - 2у)²)=
=(3х -у)(4х² + 4ху +у² - 2х²-ху +4ху+2у² + х² - 4ху +4у²) =
= (3х -у)(3х²+3ху +7у²)
(применили формулу суммы кубов)
3) (2mn-1)^3+1 =(2mn -1 +1)(4m²n² -4mn +1 - 2mn +1 +1)=
=2mn(4m²n² -6mn +3)
(применили формулу суммы кубов)
4) (3a-2b)^3+8b^3 = (3a -2b +2b)(9a² -12ab +4b² -6ab +4b² + 4b²)=
=3a(9a²-18ab + 12b²)
( сумма кубов)