Область значений функции - это множество значений, которые может принимать зависимая переменная у при переборе всех х (значений независимой переменной х) из области определения функции. Иными словами, это - та часть оси ординат (оси у), на которой можно найти все значения функции. Область значений обозначается, как E(f). Например: линейная функция y=ax+b определяется на всей числовой прямой (х∈(-∞;+∞)), значит область значений зависимой переменной у, тоже определяется по всей оси У (E(f)∈(-∞;+∞). Во вложении, график функции f(x)=2x²+3. Это квадратичная парабола, с ветвями, направленными вверх. По графику видно, что вершина параболы - точка (0;3). Независимая переменная х может принимать любые значения, то есть D(x)∈(-∞;+∞), а минимальное значение функции у=3, значит E(f)=[3;+∞) При определении области значений функции, нужно обратить внимание на ОДЗ переменной х и есть ли, по условию, ограниченный промежуток значений х (в этом случае, область значений находится только в пределах данного промежутка). Зависимая переменная у называется так, потому, что она зависит от независимой переменной, которая может принимать любые значения. Хорошим примером этой зависимости является функция у=а/х. График - гипербола. При определении х, областью допустимых значений (ОДЗ) является вся числовая прямая, кроме х=0, потому. что на ноль делить нельзя. И, если х не может принять значение 0, то у тоже не может принять значение, соответствующее х=0. И, область значений функции у=а/х, является вся числовая прямая оси У, не включая 0: E(f)∈(-∞;0)∪(0;+∞) - в точке х=0, функция терпит бесконечный разрыв.
ответ:
решаем:
а) 2x + 3y = 16
3x - 2y = 11
из 1-го ур-ния y = (16 - 2x) / 3
подставляем во 2-е
3x - 2*(16 - 2x) / 3 = 11
9x - 32 + 4x = 33
13x = 65, x = 5, y = (16 - 2x) / 3 = 2
ответ: x = 5, y = 2
б) 6(x + y) = 5 - (2x + y)
3x - 2y = -3 (или -3 -3 = -6, уточни)
из 2-го у = (3х + 3) / 2
6(x + (3х + 3) / 2) = 5 - (2x + (3х + 3) / 2)
6(5x + 3) / 2 = 5 - (7x + 3) / 2
6(5x + 3) = 10 - (7x + 3)
30x + 18 = 10 - 7x - 3
37x = -11, x = -11/37, y = (3х + 3) / 2 = (-33+111) / (2*37) = 78 / (2*37) = 39/37
ответ: x = -11/37, y = 39/37
в) 2x + 3y = 3
5x - 4y = 19
y = (3 - 2x) / 3
5x - 4(3 - 2x) / 3 = 19
15x - 12 + 8x = 57
23x = 69, x = 3
y = (3 - 2x) / 3 = (3 - 6) / 3 = -1
ответ: x = 3, y = -1
г) 3x + 2y = 6
5x + 6y = -2
y = (6 - 3x) / 2
5x + 6(6 - 3x) / 2 = -2
5x + 3(6 - 3x) = -2
5x + 18 - 9x = -2
4x = 20, x = 5
y = (6 - 3x) / 2 = (6 - 15) / 2 = -9/2
ответ: x = 5, y = -4,5
объяснение:
Например: линейная функция y=ax+b определяется на всей числовой прямой (х∈(-∞;+∞)), значит область значений зависимой переменной у, тоже определяется по всей оси У (E(f)∈(-∞;+∞).
Во вложении, график функции f(x)=2x²+3. Это квадратичная парабола, с ветвями, направленными вверх. По графику видно, что вершина параболы - точка (0;3). Независимая переменная х может принимать любые значения, то есть D(x)∈(-∞;+∞), а минимальное значение функции у=3, значит E(f)=[3;+∞)
При определении области значений функции, нужно обратить внимание на ОДЗ переменной х и есть ли, по условию, ограниченный промежуток значений х (в этом случае, область значений находится только в пределах данного промежутка).
Зависимая переменная у называется так, потому, что она зависит от независимой переменной, которая может принимать любые значения.
Хорошим примером этой зависимости является функция у=а/х. График - гипербола.
При определении х, областью допустимых значений (ОДЗ) является вся числовая прямая, кроме х=0, потому. что на ноль делить нельзя. И, если х не может принять значение 0, то у тоже не может принять значение, соответствующее х=0. И, область значений функции у=а/х, является вся числовая прямая оси У, не включая 0: E(f)∈(-∞;0)∪(0;+∞) - в точке х=0, функция терпит бесконечный разрыв.