Итак, у нас есть два варианта раскрытия модуля, 2-х и х - 2, запишем условия для каждого из раскрытий: 1) х < 2, значит модуль раскрывается в обратном порядке (2 - х); 2) х ≥ 2, значит модуль раскрывается в прямом порядке (х - 2);
Тогда раскроем модуль для каждого случая:
1) 8 - 4x + 2x = 6 - 3x + 1 ⇔ x = -1; - этот корень подходит (см. в разборе случаев (1))
2) 4x - 8 + 2x = 1 - 6 + 3x ⇔ x = 1; - не подходит (см. в разборе случаев (2))
Таким образом, у нас лишь один корень, являющийся решением - х = -1;
1) 4x-8+2x=3x-6+1, где x-2>0;
3x=3; x=1; 1-2>0, -1>0 - не подходит;
2) -4x+8+2x=-3x+6+1, где х-2<0;
x=-8+7=-1; -1-2<0; -3<0;
ответ: x=-1
Тогда раскроем модуль для каждого случая:
1) 8 - 4x + 2x = 6 - 3x + 1 ⇔ x = -1; - этот корень подходит (см. в разборе случаев (1))
2) 4x - 8 + 2x = 1 - 6 + 3x ⇔ x = 1; - не подходит (см. в разборе случаев (2))
Таким образом, у нас лишь один корень, являющийся решением - х = -1;