Зная автора задания как специалиста (в частности) в области геометрии, после первых неудачных попыток сделать эту задачу я подумал о возможности применить геометрию, после чего появилась надежда на успех.
Во-первых, мы можем считать, что x > 0 (если x<0, то y(x)>y(-x), то есть при отрицательном x наименьшее значение достигаться не может. Значение y(0)=6 пока просто запомним).
Пусть x>0 - некоторое число. Рассмотрим два . треугольника, один со сторонами 2 и x и углом в 30° между ними, второй - со сторонами 4 и x и углом в 90° между ними. Совместив их по стороне, равной x, получим 4-хугольник ABCD со сторонами AB=2, BC=4, диагональю BD=x и углом ABC, который диагональ BD делит на углы ABD=30° и DBC=90°. По теореме косинусов
Поэтому y(x) при положительном x - это сумма сторон AD и DС. Меняя x, мы меняем вершину D, двигая ее по лучу с вершиной B (при неподвижных A, B и C). Ясно, что сумма будет минимальной, когда четырехугольник ABCD вырождается (это когда D лежит на AC), и равна стороне AC,
Поскольку ответом в задаче будет
Замечание. Значение в нуле в принципе мы могли не вычислять, считая, что при этом получается вырожденный четырехугольник с нулевой диагональю.
B зрительном зале были 320 посадочных мест , с равными количеством в каждом ряду.после того как количество посадочных мест в каждом ряду увеличили на 4 и добавили ещё один ряд ,то количество посадочных мест в зале стало 420.сколько рядов стало в зрительном зале ?
Пусть х мест было в каждом ряду, тогда рядов было 320/х . После увеличения зрительного зала мест стало (х+4) , а рядов 320 / х + 1 . Составляем уравнение по условию задачи: (х+4) * ( 320/х + 1) = 420 (х+4) *(320+х) / х = 420 приводим к общему знаменателю и отбрасываем его заметив, что х≠0 (х+4)(320+х) = 420х 320х+х2+1280+4х-420х=0 х2 -96 х +1280 = 0 Д= 9216 - 4*1280 = 9216 -5120=4096 х(1)=(96+64) / 2 =80 (нереально для кинотеатра, так как в каждом ряду по 4 места) х(2) =(96-64) / 2 =16 320:16 + 1 = 21 ряд стал в новом зрит зале.
Зная автора задания как специалиста (в частности) в области геометрии, после первых неудачных попыток сделать эту задачу я подумал о возможности применить геометрию, после чего появилась надежда на успех.
Во-первых, мы можем считать, что x > 0 (если x<0, то y(x)>y(-x), то есть при отрицательном x наименьшее значение достигаться не может. Значение y(0)=6 пока просто запомним).
Пусть x>0 - некоторое число. Рассмотрим два . треугольника, один со сторонами 2 и x и углом в 30° между ними, второй - со сторонами 4 и x и углом в 90° между ними. Совместив их по стороне, равной x, получим 4-хугольник ABCD со сторонами AB=2, BC=4, диагональю BD=x и углом ABC, который диагональ BD делит на углы ABD=30° и DBC=90°. По теореме косинусов
Поэтому y(x) при положительном x - это сумма сторон AD и DС. Меняя x, мы меняем вершину D, двигая ее по лучу с вершиной B (при неподвижных A, B и C). Ясно, что сумма будет минимальной, когда четырехугольник ABCD вырождается (это когда D лежит на AC), и равна стороне AC,
Поскольку ответом в задаче будет
Замечание. Значение в нуле в принципе мы могли не вычислять, считая, что при этом получается вырожденный четырехугольник с нулевой диагональю.
Пусть х мест было в каждом ряду, тогда рядов было 320/х . После увеличения зрительного зала мест стало (х+4) , а рядов 320 / х + 1 . Составляем уравнение по условию задачи:
(х+4) * ( 320/х + 1) = 420
(х+4) *(320+х) / х = 420
приводим к общему знаменателю и отбрасываем его заметив, что х≠0
(х+4)(320+х) = 420х
320х+х2+1280+4х-420х=0
х2 -96 х +1280 = 0
Д= 9216 - 4*1280 = 9216 -5120=4096
х(1)=(96+64) / 2 =80 (нереально для кинотеатра, так как в каждом ряду по 4 места)
х(2) =(96-64) / 2 =16
320:16 + 1 = 21 ряд стал в новом зрит зале.