Решите уравнение А) (x-40)(x+4)-(x+6)^2=-16
Б) (x-11)^2=(x-7)(x-9)
2.Выполните возведение в квадрат
A) (10mm^2-7mn^2)^2
Б) (-3a+7b)^2 - в данном задании, можно поменять слагаемые местами и воспользоваться формулой квадрата разности двух выражений
В) (30а^3b+4b^2)^2
1) Обозначим через х количество книг на 1 полке, а через у - количество книг на 2 полке.
2) Так как на 2 полках первоначально было 70 книг, то можем составить первое уравнение: х + у = 70
3) Когда с 1 полки забрали 25% книг, то на ней осталось (100 - 25) = 75% книг от первоначального или 0,75х и в тоже время на 14 книг больше чем на второй полке, на основании этого можно составить второе уравнение: 0,75х = у + 14.
4) Таким образом получаем 2 уравнения с двумя неизвестными. Из первого уравнения выражаем у через х, получаем: у = 70 - х и подставляем во второе уравнение:
0,75х = 70 - х + 14
1,75х = 84
х = 48
у = 70 - х = 70 - 48 = 22
ответ: На 1 полке было 48 книг, на второй - 22 книги.
S по течению - 16 км.
t - 3 часа
V течения - 1 км/ч
Составим уравнение.
Пусть Х - скорость в стоячей воде
Значит
Против теч. = х-1
По теч. = х +1
По формуле t = S : V
Состовляем время
Протб теч. = 28 / ( х -1 )
По течен. = 16 / ( х +1 )
Ну а теперь скомпануем.
16/( х+1) + 28 / (х-1) = 3 часа ( это всего времени)
Что бы решить надо найти О.З.
Это ( х-1) ( х+1)
У тройки нет знаменателя поэтому мы должны ему его добавить.
Перепеши тот же пример, и просто добавь 3 × ( х+1) × (х -1 ).
Теперь когда у всех есть О.З, мы можем раскрывать скобки и решать.
16х- 16 +28х +28 = 3х^2 - 3
Иксы в одну сторону, без в другую.
И получим.
3х^2 - 44 х - 15 =0
Д = 529 , из под корня равно 23
Х1 = 15 ( подх.)
х2 = - 1/3 ( неподх.)