Поскольку переменная х входит в чётной степени, то график заданной функции симметричен относительно оси у. Производная этой функции равна нулю пр х = 0. Подставив это значение в уравнение функции, получаем у = 1. Исследуем поведение производной вблизи точки х = 0. х 0.5 0 -0.5 у' -0.6875 0 0.6875. Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1. Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809. ответ при (х=+-3) : умакс = 1, умин = -809.
2(√3/2cosx-1/2sinx)=√2
cos(x+π/6)=√2/2
x+π/6=-π/4+2πn U x+π/6=π/4+2πn
x=-5π/12+2πn U x=π/12+2πn,n∈z
2
2(1/2cosx-√3/2sinx)=2cos5x
cos(x+π/3)=cos5x
5x=x+π/3+2πn U 5x=-π/3-x+2πn
4x=π/3+2πn U 6x=-π/3+2πn
x=π/12+πn/2 U x=-π/18+πn/3,n∈z
3
sin3xcos2x=sin(3x+2x)
sin3xcos2x=sin3xcos2x+sin2xcos3x
sin2xcos3x=0
sin2x=0⇒2x=πn⇒x=πn/2,n∈z
cos3x=0⇒3x=π/2+πn⇒x=π/6+πn/3,n∈z
4
sinxsin7x=sin3xsin5x
1/2[cos(7x-x)-cos(7x+x)]=1/2[cos(5x-3x)-cos(5x+3x)]
cos6x-cos8x=cos2x-cos8x
cos6x=cos2x
6x=2x+2πn U 6x=-2x+2πn
4x=2πn U 8x=2πn
x=πn/2 U x=πn/4-общий
Производная этой функции равна нулю пр х = 0.
Подставив это значение в уравнение функции, получаем у = 1.
Исследуем поведение производной вблизи точки х = 0.
х 0.5 0 -0.5
у' -0.6875 0 0.6875.
Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1.
Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809.
ответ при (х=+-3) : умакс = 1,
умин = -809.