ответ:ДЛЯ КУРАТОРОВ! Я учусь на дистанционном обучении уже три года! Это мне выдавал учитель! По этому я училась! Вот)
Объяснение: Уравнение =
Если ∣∣∣∣>1, то уравнение = не имеет корней.
Например, уравнение =2 не имеет корней.
Если ∣∣∣∣≤1, то корни уравнения выражаются формулой =(−1)+π,∈ℤ.
Что же такое ? Арксинус в переводе с латинского означает «дуга и синус». Это обратная функция.
Если ∣∣∣∣≤1, то (арксинус ) — это такое число из отрезка [−π2;π2], синус которого равен .
Говоря иначе:
=⇒=,∣∣∣∣≤1,∈[−π2;π2].
Рассмотрим данную теорию на примере.
Пример:
найти 12.
Выражение 12 показывает, что синус угла равен 12, т. е. =12.
Далее просто находим точку этого синуса на числовой окружности, что и является ответом:
sin.png
точка 12, находящаяся на оси , соответствует точке π6 на числовой окружности.
Значит, 12=π6.
Если π6=12, то 12=π6.
В первом случае по точке на числовой окружности находим значение синуса, а во втором — наоборот, по значению синуса находим точку на числовой окружности. Движение в обратную сторону. Это и есть арксинус.
Теорема. Для любого ∈[−1;1] справедлива формула (−)=−.
ответ:ДЛЯ КУРАТОРОВ! Я учусь на дистанционном обучении уже три года! Это мне выдавал учитель! По этому я училась! Вот)
Объяснение: Уравнение =
Если ∣∣∣∣>1, то уравнение = не имеет корней.
Например, уравнение =2 не имеет корней.
Если ∣∣∣∣≤1, то корни уравнения выражаются формулой =(−1)+π,∈ℤ.
Что же такое ? Арксинус в переводе с латинского означает «дуга и синус». Это обратная функция.
Если ∣∣∣∣≤1, то (арксинус ) — это такое число из отрезка [−π2;π2], синус которого равен .
Говоря иначе:
=⇒=,∣∣∣∣≤1,∈[−π2;π2].
Рассмотрим данную теорию на примере.
Пример:
найти 12.
Выражение 12 показывает, что синус угла равен 12, т. е. =12.
Далее просто находим точку этого синуса на числовой окружности, что и является ответом:
sin.png
точка 12, находящаяся на оси , соответствует точке π6 на числовой окружности.
Значит, 12=π6.
Если π6=12, то 12=π6.
В первом случае по точке на числовой окружности находим значение синуса, а во втором — наоборот, по значению синуса находим точку на числовой окружности. Движение в обратную сторону. Это и есть арксинус.
Теорема. Для любого ∈[−1;1] справедлива формула (−)=−.
Частные случаи:
1. =0⇒=π,∈ℤ;
2. =1⇒=π2+2π,∈ℤ;
3. =−1⇒=−π2+2π,∈ℤ.
Пример:
решить уравнение =−12.
Используем формулу =(−1)+π,∈ℤ
и получаем ответ =(−1)(−π6)+π,∈ℤ.
х=84; у=58.
Объяснение:
Известно, что 30% числа х на 2 больше, чем 40% числа у, а 50% числа у на 8 больше, чем ¼ числа х. Найдите числа х и у.
Согласно условию задачи составляем систему уравнений:
0,3х-0,4у=2
0,5у-0,25х=8
Разделить второе уравнение на 0,25 для упрощения:
0,3х-0,4у=2
2у-х=32
Выразим х через у во втором уравнении, подставим выражение в первое уравнение и вычислим у:
-х=32-2у
х=2у-32
0,3(2у-32)-0,4у=2
0,6у-9,6-0,4у=2
0,2у=2+9,6
0,2у=11,6
у=11,6/0,2
у=58
х=2у-32
х=2*58-32
х=84
Проверка:
0,3*84-0,4*58=25,2-23,2=2
0,5*58-0,25*84=29-21=8, верно.