В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Anfisac3t
Anfisac3t
29.06.2020 12:14 •  Алгебра

Решите уравнение: х2 – 3|х соч

Показать ответ
Ответ:
AnastasiyaSm
AnastasiyaSm
06.02.2020 17:04

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
0,0(0 оценок)
Ответ:
Nottyt
Nottyt
05.10.2021 22:12

ответ: 6

Объяснение:

Применим следующий прием   , не  зависимо от того как , расположены заборы , все поле  размером  80*80  можно дополнить некоторым количеством заборов , чтобы за забором был каждый участок размером 10*10 м .Чтобы это понять , нарисуйте  в тетради в клетку  квадрат 8 на 8 и замостите все место  квадратами  2 на 2 и 1 на 4.  Достаточно провести недостающие вертикали и горизонтали по клеточкам ,  чтобы  каждый квадратик 1 на 1 был  разделен забором.

Итак,  допустим мы  доложили до уже готовой конструкции  заборы ,  чтобы каждый квадратик 10*10  был  отделен .  А  теперь решили  вновь убрать эти заборы , чтобы конструкция вернулась в первоначальное положение. Тогда внутри каждого квадрата 20*20  нужно  убрать  4  забора  размером  10 метров  ( мысленно прочертили  две горизонтальные и две вертикальные линии на  стыках  соседних не перпендикулярных заборов)

Внутри каждого  прямоугольника 10*40 всего нужно убрать  3  забора размером 10 м  (  так же  мысленно  прочертили недостающие линии) .

Теперь  мысленно  разобьем весь квадрат 80*80 на вертикальные и горизонтальные линии , расстояние между которыми 10 м.

Cколько линий получилось ? Правильно :  9 +9 =18 . Сколько квадратиков в 1 линии ? Правильно : 8

Пусть  число участков  10*40 равно x , тогда число участков 20*20 равно 16-x.

Тогда  учитывая ,что по краям острова заборов так же нет , то уравнение  для суммарной длинны заборов выглядит так :

18*8*10 -3*x*10 -4*(16-x)*10 - 80*4 = 540

18*8 -3*x -4*(16-x)-32=54

x= 54+32+64 -144 = 150-144= 6

ответ :  6  участков 10*40

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота