Чертим график лин. ФУНК. y=-3x+1 и ставим точку с координатами (-2; - 1).
Через эту точку проводим прямую перпендикулярно линейной функции y=-3x+1.
Формула линейной функции равна y=kx+m, теперь находим две точки на графике второй лин фун 1) с координатами (0; - 6), 2) с координатами (-2; - 1). Поставляем в формулу лин фун координаты точки 1) и получается - 6=0k+ m то есть m=-6.
Мы нашли m. Теперь k. Поставляем в формулу лин фун координаты точки 2) и m и получается - 1=-2k - 6 то есть 2k=-5 то есть k=-2,5. Мы узнали k и m. Поставляем их в формулу лин фун и получается y= - 2,5x - 6. Готово!
Y= - 2,5X - 6
Объяснение:
Чертим график лин. ФУНК. y=-3x+1 и ставим точку с координатами (-2; - 1).
Через эту точку проводим прямую перпендикулярно линейной функции y=-3x+1.
Формула линейной функции равна y=kx+m, теперь находим две точки на графике второй лин фун 1) с координатами (0; - 6), 2) с координатами (-2; - 1). Поставляем в формулу лин фун координаты точки 1) и получается - 6=0k+ m то есть m=-6.
Мы нашли m. Теперь k. Поставляем в формулу лин фун координаты точки 2) и m и получается - 1=-2k - 6 то есть 2k=-5 то есть k=-2,5. Мы узнали k и m. Поставляем их в формулу лин фун и получается y= - 2,5x - 6. Готово!
Если что, лин фун это линейная функция
Я понятно объяснил?
Решение: Пусть эти числа равны x и y
x + y = 10
(x +y) ^ 2 = 100
x ^ 2 + 2 x y + y ^ 2 = 100 (раскрыли формулу сокращённого умножения - квадрат суммы)
x ^ 3 + y ^ 3 = (x + y) * (x ^ 2 - x * y + y ^ 2) (раскрыли формулу сокращённого умножения - сумма кубов)
y ^ 3 + y ^ 3 = 10 * (100 - 3 x y)
y = 10 - x
x ^ 3 + y ^ 3 = 10 * (100 - 3 * x* (10 - x))
x ^ 3 + y ^ 3 = 1000 - 30 * x + 3 * x ^ 2
x ^ 3 + y ^ 3 = 1000 - 3 * x * (10 - x)
Сумма будет наименьшей, при условии, если x * (10 - x) имеет наибольшее значение, а наибольшее оно при x = 5
ответ: x = 5, y = 5.