Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
Найдем стороны четырехугольника АВСD: Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА. АВ{1;3}, |AB|=√(1+9)=√10. BC{3;1}, |BC|=√(9+1)=√10. CD{-1;-3},|CD|=√(1+9)=√10. AD{3;1}, |AD|=√(9+1)=√10. Итак, в четырехугольнике все стороны равны. Ромбом называется параллелограмм, у которого все стороны равны. Если все противоположные стороны ПОПАРНО равны: AB = CD, BC=DA, то четырехугольник АВСD - параллелограмм. У нас выполняются оба условия, значит четырехугольник АВСD является ромбом или квадратом. Но для того, чтобы доказать, что это НЕ КВАДРАТ, определим угол между двумя соседними векторами. Угол α между вектором a и b: cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае: cosα=(3+3)/[√(1+9)*√(9+1)] = 6/10 = 0,6. То есть угол между векторами АВ и ВС НЕ ПРЯМОЙ. Этого достаточно, чтобы доказать, что четырехугольник АВCD не квадрат. Следовательно, четырехугольник АВCD - РОМБ. Что и требовалось доказать...
Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.
Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА.
АВ{1;3}, |AB|=√(1+9)=√10.
BC{3;1}, |BC|=√(9+1)=√10.
CD{-1;-3},|CD|=√(1+9)=√10.
AD{3;1}, |AD|=√(9+1)=√10.
Итак, в четырехугольнике все стороны равны.
Ромбом называется параллелограмм, у которого все стороны равны.
Если все противоположные стороны ПОПАРНО равны: AB = CD, BC=DA, то четырехугольник АВСD - параллелограмм.
У нас выполняются оба условия, значит четырехугольник АВСD является ромбом или квадратом.
Но для того, чтобы доказать, что это НЕ КВАДРАТ, определим угол между двумя соседними векторами. Угол α между вектором a и b:
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
В нашем случае: cosα=(3+3)/[√(1+9)*√(9+1)] = 6/10 = 0,6. То есть угол между векторами АВ и ВС НЕ ПРЯМОЙ. Этого достаточно, чтобы доказать, что четырехугольник АВCD не квадрат.
Следовательно, четырехугольник АВCD - РОМБ.
Что и требовалось доказать...