(log₃√(x+8)) – 1 = log₃2-log₃√(x-8) ОДЗ х+8>0 x > - 8 x-8>0 x >8
1/2log₃(x+8) – 1 = log₃2 - 1/2log₃ (x-8)
1/2log₃(x+8) +1/2log₃ (x-8) = log₃2 +1
1/2 *( log₃(x+8) +log₃ (x-8) = log₃2 +log₃3
log₃(x+8) *(x-8) = 2* log₃2*3
log₃(x²-8² ) = log₃6²
х²-64=36
х²=100
х₁=10 х₂= -10
ответ с учетом ОДЗ х=10
(log₃√(x+8)) – 1 = log₃2-log₃√(x-8) ОДЗ х+8>0 x > - 8 x-8>0 x >8
1/2log₃(x+8) – 1 = log₃2 - 1/2log₃ (x-8)
1/2log₃(x+8) +1/2log₃ (x-8) = log₃2 +1
1/2 *( log₃(x+8) +log₃ (x-8) = log₃2 +log₃3
log₃(x+8) *(x-8) = 2* log₃2*3
log₃(x²-8² ) = log₃6²
х²-64=36
х²=100
х₁=10 х₂= -10
ответ с учетом ОДЗ х=10