1) Число 10a+b. Сумма цифр = a + b = (10a + b) - 9a 2) Остаток от деления суммы цифр на 9 такой же, что и от деления самого числа на 9. 3) Если после умножения на число сумма цифр не поменялась, значит, не поменялся и остаток от деления на 9. 4) Следовательно, можно найти сначала найти число R (0 <= R < 9) - остаток от деления исходного числа на 9, такое, что при умножении любого однозначного числа на R получалось бы число, дающее в остатке при делении на 9 опять число R. 5) Существует только одно такое число R - это R = 0 6) Исходное число должно делиться на 9. 7) Все кандидаты на роль исходного числа: 54, 63, 72, 81, 90 8) Не подходят числа: 54 (54*7 - сумма цифр 18); 63 (63*3 - сумма цифр 18); 72 (72*4 - сумма цифр 18); 81 (81*6 - сумма цифр 18). 9) Легко проверить, что 90 подходит.
1.Распределительное свойство умножения относительно сложения:
2.Распределительное свойство умножения относительно вычитания:
3.Сочетательное свойство умножения:
Это просто правила:
1.Вынесение общего делителя(распределительное свойство)
2.Формулы сокращенного умножения:
Квадрат суммы:
Квадрат разности:
Разность квадратов:
Куб суммы:
Куб разности:
Сумма кубов:
Разность кубов:
3.Упрощение выражений со степенью(корнем)
4.Упрощение выражений с дробями
5.Упрощение тригонометрических выражений
2) Остаток от деления суммы цифр на 9 такой же, что и от деления самого числа на 9.
3) Если после умножения на число сумма цифр не поменялась, значит, не поменялся и остаток от деления на 9.
4) Следовательно, можно найти сначала найти число R (0 <= R < 9) - остаток от деления исходного числа на 9, такое, что при умножении любого однозначного числа на R получалось бы число, дающее в остатке при делении на 9 опять число R.
5) Существует только одно такое число R - это R = 0
6) Исходное число должно делиться на 9.
7) Все кандидаты на роль исходного числа: 54, 63, 72, 81, 90
8) Не подходят числа: 54 (54*7 - сумма цифр 18); 63 (63*3 - сумма цифр 18); 72 (72*4 - сумма цифр 18); 81 (81*6 - сумма цифр 18).
9) Легко проверить, что 90 подходит.
ответ. 90.