Чтобы число делилось на 3, 4, 5 одновременно. число, оканчивающееся на 5, не может быть кратно 4, поэтому "5" вычеркиваем. 0 не вычеркиваем, так как числа, оканчивающиеся на 0 (как и на 5), кратны 5. число делится на 4, если последние две цифры этого числа образуют число, кратное 4. 20 кратно 4. но если мы ее вычеркнем, то нам придется вычеркнуть и 7, и 5, и 9(50, 70, 90не кратны 4), но уже получается что мы вычеркнули больше трех цифр, что недопустимо. поэтому последние цифры искомого числа 2 и 0. осталось нам воспользоваться признаком делимости на 3(сумма цифр кратного трём числа кратна 3). 8+6+9+5+7+2+0=37⇒ближайшие кратные 3 числа (<37) это 36, 33, 30, 27, 24, 21. 36 мы не можем получить, вычеркнув любые 2 цифры из 8, 7, 9, 5, 7. также не можем получить 33, 30, 27. а вот сумму 24 можем получить, вычеркнув 8 и 5. итак, искомое число 69720.
В решении.
Объяснение:
Найти значение выражения:
[(5х+у)/(х-5у) + (5х-у)/(х+5у)] : [(х²+у²)/(х²-25у²)]= 10.
1) [(5х+у)/(х-5у) + (5х-у)/(х+5у)]=
общий знаменатель (х-5у)(х+5у), надписываем над числителями дополнительные множители:
[(х+5у)*(5х+у) + (х-5у)*(5х-у)] / (х-5у)(х+5у)=
=(5х²+ху+25ху+5у² + 5х²-ху-25ху+5у²) / (х-5у)(х+5у)=
=(10х²+10у²) / (х-5у)(х+5у)=
в числителе вынести 10 за скобки, в знаменателе свернуть разность квадратов:
=10*(х²+у²)/(х²-25у²);
2) [10*(х²+у²)/(х²-25у²)] : [(х²+у²)/(х²-25у²)]=
= [10*(х²+у²) * (х²-25у²)] / [(х²-25у²) * (х²+у²)]=
сократить (разделить) (х²+у²) и (х²+у²) на (х²+у²), (х²-25у²) и (х²-25у²) на (х²-25у²):
=10.