Пусть I – точка пересечения биссектрис треугольника АВС, а медиана СО пересекает проведенные биссектрисы в точках K и L (см. рис.). Так как ∠AIB = 90° + ½ ∠C > 90°, то в полученном треугольнике KLI угол при вершине I равен 45°. Значит, ∠AIB = 135°, поэтому ∠AСB = 90°. Следовательно, ОС = ОА = OB.
Без ограничения общности можно считать, что прямым в треугольнике KLI является угол K. Тогда в треугольнике ВОС высота ВK совпадает с биссектрисой, поэтому ОВ = ВС. Таким образом, треугольник ВОС – равносторонний. Следовательно, ∠ABС = 60°, значит, ∠ВAС = 30°.
Вот накалякал. Разбирайся :)
xy/(x+y) = 5
xz/(x+z) = 7
yz/(y+z) = 9
xy = 5x + 5y
xz = 7x + 7z
yz = 9y + 9z
x(y-5) = 5y
x = 5y/(y-5)
5yz/(y-5) = 35y/(y-5) + 7z
5yz = 35y + 7z * (y-5)
5yz = 35y + 7yz - 35z
2yz + 35y = 35z
y(2z + 35) = 35z
y = 35z/(2z + 35) = z/(2z/35 + 1)
35z^2/(2z + 35) = 315z/(2z + 35) + 9z
35z^2 = 315z + 9z*(2z + 35)
35z^2 = 315z + 18z^2 + 315z
17z^2 = 630z
z=630/17
y = 35*630/(2*630/17 + 35)/17 = 35*630/(1260 + 595) = 22050/1855 = 630 / 53
x = 5*630/(630/53 - 5)/53 = 5*630/((630/53 - 5)*53) = 5*630/365 = 630/73
Пусть I – точка пересечения биссектрис треугольника АВС, а медиана СО пересекает проведенные биссектрисы в точках K и L (см. рис.). Так как
∠AIB = 90° + ½ ∠C > 90°, то в полученном треугольнике KLI угол при вершине I равен 45°. Значит, ∠AIB = 135°, поэтому ∠AСB = 90°. Следовательно, ОС = ОА = OB.
Без ограничения общности можно считать, что прямым в треугольнике KLI является угол K. Тогда в треугольнике ВОС высота ВK совпадает с биссектрисой, поэтому ОВ = ВС. Таким образом, треугольник ВОС – равносторонний. Следовательно, ∠ABС = 60°, значит, ∠ВAС = 30°.
ответ
90°, 60° и 30°.