имела бесконечное множество решений, надо, чтобы прямые сливались, т.е. а₁/а₂=b₁/b₂=c₁/c₂, в вашем случае
2/4=-3/(-6)=5/(10), т.е. коэффициенты были пропорциональны, например, это второе уравнение 4х-6у+10=0
б) система не имеет решений, когда выполняется условие
а₁/а₂=b₁/b₂≠c₁/c₂, т.е. 2/4=-3/(-6)≠5/15
т.е. второе уравнение 4х-6у+15=0;
4х-6у+10=0
4х-6у+15=0
2. По рисунку вижу две прямые, у=0.5х+2 и у=-2х+7, и система, соответственно
у=0.5х+2
у=-2х+7, решением которой является точка (2;3), это по графикам линейных функций видно. Проверим?) подставим х=2; у=3 в оба уравнения, получим
3=0.5*2+2
3=-2*2+7, все верно. Уравнения прямых можно было не писать, я глянул на их угловые коэффициенты , и составил уравнения прямых, проходящих через две точки, получил у=0.5х+2 и у=-2х+7; но еще раз подчеркиваю, это только для того, чтобы Вас убедить, что решение на рисунке совпадает с точкой пересечения.
ответ х=2; у=3.
3. Чтобы решить систему, упростим ее предварительно, построим прямые и найдем решение. упростим первое уравнение.
3х+3у-2х=3+2у; у=-х+3; упростим второе уравнение.
-2у-4х=-3х-5; 2у=-х+5; Невооруженным глазом видим решение. Это точка (1;2), проверим графически. Строим каждую прямую, предварительно выбрав по две точки, находим точку пересечения, это и будет ответ. Далее - во вложении.
1. A) Выразим х из первого уравнения системы и подставим во второе: х=3+у 3(3+у)+у=5 9+3у+у=5 4у=-4 у=-1 Подставим найденное значение у в выраженное нами значение х: х=3+у=3+(-1)=3-1=2
Проверим верность вычислений: 2-(-1)=2+1=3 - верно. 3*2+(-1)=6-1=5 - верно. х=2, у=-1. Б) Выразим у из первого уравнения системы и подставим во второе: у=4-х² 2*(4-х²)-х=7 8-2х²-х=7 2х²+х-1=0 Д=1+8=9 х1=(-1+3):4=1/2 х2=(-1-3):4=-1 у=4-х² При х1=1/2, у1=4-1/4=3 целых 3/4 При х2=-1, у2=4-(-1)²=4-1=3
х1=1/2, у1=3 целых 3/4; х2=-1, у2=3.
2.Подставим нашу точку (4;-2) в данные уравнения. Если в обоих уравнениях получится тождество, то эта пара чисел является решением системы, в противном случае-нет. На первом месте всегда стоит х, а на втором - у (если не оговорено в условиях другое). Подставляем: 4+(-2)=2 4-2=2 2=2 - верно
4=-2, но 4≠-2. Второе условие не соответствует - пара чисел (4;-2) - не является решением для данной системы уравнений.
1. а) 2x – 3(y – 1) + 2 = 0; 2x -3y +5=0 ;
Чтобы система
а₁х+b₁y+c₁=0
a₂x+b₂y+c₂=0
имела бесконечное множество решений, надо, чтобы прямые сливались, т.е. а₁/а₂=b₁/b₂=c₁/c₂, в вашем случае
2/4=-3/(-6)=5/(10), т.е. коэффициенты были пропорциональны, например, это второе уравнение 4х-6у+10=0
б) система не имеет решений, когда выполняется условие
а₁/а₂=b₁/b₂≠c₁/c₂, т.е. 2/4=-3/(-6)≠5/15
т.е. второе уравнение 4х-6у+15=0;
4х-6у+10=0
4х-6у+15=0
2. По рисунку вижу две прямые, у=0.5х+2 и у=-2х+7, и система, соответственно
у=0.5х+2
у=-2х+7, решением которой является точка (2;3), это по графикам линейных функций видно. Проверим?) подставим х=2; у=3 в оба уравнения, получим
3=0.5*2+2
3=-2*2+7, все верно. Уравнения прямых можно было не писать, я глянул на их угловые коэффициенты , и составил уравнения прямых, проходящих через две точки, получил у=0.5х+2 и у=-2х+7; но еще раз подчеркиваю, это только для того, чтобы Вас убедить, что решение на рисунке совпадает с точкой пересечения.
ответ х=2; у=3.
3. Чтобы решить систему, упростим ее предварительно, построим прямые и найдем решение. упростим первое уравнение.
3х+3у-2х=3+2у; у=-х+3; упростим второе уравнение.
-2у-4х=-3х-5; 2у=-х+5; Невооруженным глазом видим решение. Это точка (1;2), проверим графически. Строим каждую прямую, предварительно выбрав по две точки, находим точку пересечения, это и будет ответ. Далее - во вложении.
х=3+у
3(3+у)+у=5
9+3у+у=5
4у=-4
у=-1
Подставим найденное значение у в выраженное нами значение х:
х=3+у=3+(-1)=3-1=2
Проверим верность вычислений: 2-(-1)=2+1=3 - верно.
3*2+(-1)=6-1=5 - верно.
х=2, у=-1.
Б) Выразим у из первого уравнения системы и подставим во второе:
у=4-х²
2*(4-х²)-х=7
8-2х²-х=7
2х²+х-1=0
Д=1+8=9
х1=(-1+3):4=1/2
х2=(-1-3):4=-1
у=4-х²
При х1=1/2, у1=4-1/4=3 целых 3/4
При х2=-1, у2=4-(-1)²=4-1=3
х1=1/2, у1=3 целых 3/4; х2=-1, у2=3.
2.Подставим нашу точку (4;-2) в данные уравнения. Если в обоих уравнениях получится тождество, то эта пара чисел является решением системы, в противном случае-нет. На первом месте всегда стоит х, а на втором - у (если не оговорено в условиях другое).
Подставляем:
4+(-2)=2
4-2=2
2=2 - верно
4=-2, но 4≠-2. Второе условие не соответствует - пара чисел (4;-2) - не является решением для данной системы уравнений.