В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Stapanmm
Stapanmm
31.03.2020 01:14 •  Алгебра

Решите уравнение (sin x/2 -3)(2cosx-1)=0

Показать ответ
Ответ:
annykovaleva
annykovaleva
17.06.2020 12:31

(sin x/2 -3)(2cosx-1)=0

sinx/2-3=0 |sinx|<=1 нет решений

2сosx=1

cosx=1/2

x=+-П/3+2Пk

0,0(0 оценок)
Ответ:
MrDark11
MrDark11
17.06.2020 12:31

cosx=cos(x/2*2)-воспользуемся формулой косинуса двойного угла
сosx=cos(x/2)^2-sin(x/2)^2
(sinx/2-3)(cos(x/2)^2-sin(x/2)^2)=0
cos(x/2)^2=1-sin(x/2)^2
(sinx/2-3)(1-2sin(x/2)^2)=0
sinx/2-2sin(x/2)^3-3+6sin(x/2)^2=0
sinx/2-3+6sin(x/2)^2-2sin(x/2)^3=0
(sinx/2-3)+2sin(x/2)^2(3-sinx/2)=0
(sinx/2-3)(1-2sin(x/2)^2)=0
sinx/2=3 нет решений
1-2sin(x/2)^2=cosx
cosx=0 x=П/2+ПК,где К-целое 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота