В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Данана1
Данана1
21.01.2021 09:29 •  Алгебра

Решите уравнение x+3//x^2-x-x-5//x+x^2=x-6//1-x^2 // деление

Показать ответ
Ответ:
fackaF39
fackaF39
03.10.2020 22:15
\frac{x+3}{x^2-x} - \frac{x-5}{x+x^2} = \frac{x-6}{1-x^2} \\\\ \frac{x+3}{x(x-1)} - \frac{x-5}{x(1+x)} = \frac{x-6}{(1-x)(1+x)}\; ,\; \; ODZ:\; x\ne 0\; ,\; x\ne 1\; ,\; x\ne -1\\\\\frac{(x+3)(x+1)-(x-5)(x-1)}{x(x-1)(x+1)} = \frac{x-6}{-(x-1)(x+1)} \\\\\frac{x^2+4x+3-(x^2-6x+5)}{x(x-1)(x+1)}+ \frac{x-6}{(x-1)(x+1)}=0\\\\ \frac{10x-2+x(x-6)}{x(x-1)(x+1)} =0 \\\\ \frac{x^2+4x-2}{x(x-1)(x+1)} =0\\\\x^2+4x-2=0\; ,\; \; \; D/4=4+2=6\\\\x_1= -8-\sqrt8=-8-\sqrt6 \; \; ;\; \; \; x_2=-8+\sqrt{6}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота