15+16 =31 -шаров в первой корзине, 14+7=21 -шаров во второй. Вероятность, что из первой корзины достали белый шар = 15/31. Белый из второй корзины = 14/21 = 2/3. Вероятность, что оба шара белые равна произведению 15/31 · 2/3 =10/31.
Второй вопрос решается так. Возможны 4 варианта: белый из первой корзины и черный из второй, черный из первой и белый из второй, оба белые, оба черные. Благоприятные - три первые варианта. Надо найти вероятность каждого и сложить. Неблагоприятный последний. можно найти вероятность последнего варианта и ее вычесть из 1. 16/31 · 7/21 = 0,172 - вероятность, что оба шара черные. 1-0,172 = 0,828. - вероятность, что хотя бы один шар белый
Рациональные числа. Иррациональные числа. Примеры иррациональных чисел. Формула сложного радикала.
Иррациональные числа в отличие от рациональных (см. “Рациональные числа”) не могут быть представлены в виде обыкновенной несократимой дроби вида: m / n, где m и n – целые числа. Это числа нового типа, которые могут быть вычислены с любой точностью, но не могут быть заменены рациональным числом. Они могут появиться как результат геометрических измерений, например:
- отношение длины диагонали квадрата к длине его стороны равно ,
- отношение длины окружности к длине её диаметра равно иррациональному числу
Примеры других иррациональных чисел:
Докажем, что является иррациональным числом. Предположим противное: - рациональное число, тогда согласно определению рационального числа можно записать: = m / n , отсюда: 2 = m2 / n2, или m2 = 2 n2, то есть m2 делится на 2, следовательно, m делится на 2, откуда m= 2 k, тогда m2 = 4 k2 или 4 k2 = 2 n2, то есть n2 = 2 k2, то есть n2 делится на 2, а значит, n делится на 2, следовательно, m и n имеют общий множитель 2, что противоречит определению рационального числа (см. выше). Таким образом, доказано, что является иррациональным числом.
Вероятность, что из первой корзины достали белый шар = 15/31.
Белый из второй корзины = 14/21 = 2/3.
Вероятность, что оба шара белые равна произведению 15/31 · 2/3 =10/31.
Второй вопрос решается так. Возможны 4 варианта: белый из первой корзины и черный из второй, черный из первой и белый из второй, оба белые, оба черные. Благоприятные - три первые варианта. Надо найти вероятность каждого и сложить. Неблагоприятный последний. можно найти вероятность последнего варианта и ее вычесть из 1.
16/31 · 7/21 = 0,172 - вероятность, что оба шара черные.
1-0,172 = 0,828. - вероятность, что хотя бы один шар белый
Рациональные числа. Иррациональные числа.
Примеры иррациональных чисел.
Формула сложного радикала.
Иррациональные числа в отличие от рациональных (см. “Рациональные числа”) не могут быть представлены в виде обыкновенной несократимой дроби вида: m / n, где m и n – целые числа. Это числа нового типа, которые могут быть вычислены с любой точностью, но не могут быть заменены рациональным числом. Они могут появиться как результат геометрических измерений, например:
- отношение длины диагонали квадрата к длине его стороны равно ,
- отношение длины окружности к длине её диаметра равно иррациональному числу
Примеры других иррациональных чисел:
Докажем, что является иррациональным числом. Предположим противное: - рациональное число, тогда согласно определению рационального числа можно записать: = m / n , отсюда: 2 = m2 / n2, или m2 = 2 n2, то есть m2 делится на 2, следовательно, m делится на 2, откуда m= 2 k, тогда m2 = 4 k2 или 4 k2 = 2 n2, то есть n2 = 2 k2, то есть n2 делится на 2, а значит, n делится на 2, следовательно, m и n имеют общий множитель 2, что противоречит определению рационального числа (см. выше). Таким образом, доказано, что является иррациональным числом.