Согласно теореме Виета, сумма корней квадратного уравнения равна отрицательному коэффициенту b:
x1 + x2 = -b
Произведение корней квадратного уравнения в этой же теореме равно свободному коэффициенту с:
х1 × х2 = с
Доказательство:
Возьмём следующее уравнение:
х² + 6х - 7 = 0
Сначала решим его через дискриминант:
D = b² - 4ac = 36-4×(-7) = 36+28 = 64
x1,2 = (-b±√D)÷2a = (-6±8)÷2
x1 = (-6+8)÷2 = 1
x2 = (-6-8)÷2 = -7
Теперь решим это же уравнение через теорему Виета:
Мы знаем, что:
х1 + х2 = -b
x1 × x2 = c
Осталось лишь подобрать такие корни уравнения, которые бы подходили под эти два равенства. Путём нехитрых вычислений, находим, что этими корнями являются числа -7 и 1:
-7 + 1 = -6 = -b
-7×1 = -7 = c
ответы сходятся, значит наши рассуждения верны.
Это работает со всеми квадратными уравнениями, в которых коэффициент а = 1.
Согласно теореме Виета, сумма корней квадратного уравнения равна отрицательному коэффициенту b:
x1 + x2 = -b
Произведение корней квадратного уравнения в этой же теореме равно свободному коэффициенту с:
х1 × х2 = с
Доказательство:
Возьмём следующее уравнение:
х² + 6х - 7 = 0
Сначала решим его через дискриминант:
D = b² - 4ac = 36-4×(-7) = 36+28 = 64
x1,2 = (-b±√D)÷2a = (-6±8)÷2
x1 = (-6+8)÷2 = 1
x2 = (-6-8)÷2 = -7
Теперь решим это же уравнение через теорему Виета:
Мы знаем, что:
х1 + х2 = -b
x1 × x2 = c
Осталось лишь подобрать такие корни уравнения, которые бы подходили под эти два равенства. Путём нехитрых вычислений, находим, что этими корнями являются числа -7 и 1:
-7 + 1 = -6 = -b
-7×1 = -7 = c
ответы сходятся, значит наши рассуждения верны.
Это работает со всеми квадратными уравнениями, в которых коэффициент а = 1.
Теорема доказана.
y = x³ - 3x² + 3x - 2,5
Найдём производную :
y' = (x³)' - 3(x²)' + 3(x)' - 2,5' = 3x² - 6x + 3
Приравняем производную к нулю, найдём критические точки :
3x² - 6x + 3 = 0
x² - 2x + 1 = 0
(x - 1)² = 0 ⇒ x = 1
Эта критическая точка принадлежит заданному отрезку. Найдём значения функции в критической точке и на концах отрезка и выберем из них наибольшее .
y(1) = 1³ - 3 * 1² + 3 * 1 - 2,5 = 1 - 3 + 3 - 2,5 = - 1,5
y(- 1) = (-1)³ - 3 * (- 1)² + 3 * (- 1) - 2,5 = - 1 - 3 - 3 - 2,5 = - 9,5
y(2) = 2³ - 3 * 2² + 3 * 2 - 2,5 = 8 - 12 + 6 - 2,5 = - 0,5
ответ : наибольшее значение функции равно - 0,5