Произведение равно нулю, когда среди множителей есть нули, значит, каждую скобку приравняем к нулю и решим 2 простых уравнения. 2,8-2x= 0 - 2х = - 2,8 х = (-2,8) : (-2) х₁ = 1,4
Произведение равно нулю, когда среди множителей есть нули, значит, каждую скобку приравняем к нулю и решим 2 простых уравнения. 5x-19= 0 5х = 19 х = 19 : 5 х₁ = 3,8
1) (3-2х)² = 0,04 ОДЗ: х ∈ ]-∞; +∞[
(3-2х)² - 0,04 = 0
(3-2х)² - 0,2² = 0
Разложим по формуле a² - b² = (a-b)(a+b).
((3-2х) - 0,2)·((3-2х)+0,2) = 0
(3-2х-0,2)·(3-2х+0,2) = 0
(2,8-2х)·(3,2-2х) = 0
Произведение равно нулю, когда среди множителей есть нули, значит, каждую скобку приравняем к нулю и решим 2 простых уравнения.
2,8-2x= 0
- 2х = - 2,8
х = (-2,8) : (-2)
х₁ = 1,4
3,2-2x= 0
- 2х = - 3,2
х = (-3,2) : (-2)
х₂ = 1,6
ответ: х₁ = 1,4; х₂ = 1,6
2) Второе решается аналогично.
(5х+1)² =400 ОДЗ: х ∈ ]-∞; +∞[
(5х+1)² - 400 = 0
(5х+1)² - 20² = 0
Разложим по формуле a² - b² = (a-b)(a+b).
((5х+1) - 20)·((5х+1)+20) = 0
(5х+1-20)·(5х+1+20) = 0
(5х-19)·(5х+21) = 0
Произведение равно нулю, когда среди множителей есть нули, значит, каждую скобку приравняем к нулю и решим 2 простых уравнения.
5x-19= 0
5х = 19
х = 19 : 5
х₁ = 3,8
5x+21= 0
5х = -21
х = (-21) : 5
х₂ = - 4,2
ответ: х₁ = 3,8; х₂ = - 4,2
б) (b₁ + b₂ + b₃)/3 = 14/3, ⇒b₁ + b₂ + b₃ = 14, ⇒b₁ + b₁q + b₁q² = 14,⇒
⇒b₁ + b₁q² = 10
Получили систему двух уравнений с 2-мя переменными:
b₁q = 4
b₁ + b₁q² = 10
решаем:
b₁ + b₁q*q = 10, ⇒ b₁ + 4q = 10, ⇒b₁ = 10 - 4q
Это наша подстановка.
подставим в 1-е уравнение.
b₁q = 4, ⇒ (10 - 4q)*q = 4, ⇒ 10q -4q² = 4, ⇒ 4q² -10q +4 = 0,⇒
⇒ 2q² -5q +2 = 0. Решаем D = 25 -16 = 9
q = (5 +-3)/4
q₁= 2, q₁= 1/2
а) q₁= 2, ⇒b₁ = 10 - 4q = 10 - 8 = 2, S₅ = b₁(q⁵-1)/(q -1) = 2*31+1 = 62
б) q₂ = 1/2, ⇒b₁ = 10 -4q = 10 - 4*1/2 = 8, S₅ = 8(1/32 - 1)/(-1/2) = 15,5