Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена
Дискриминант больше нуля - два корня
Дискриминант равен нулю. В уравнении 1 корень
Дискриминант меньше нуля, значит нет действительных корней
2)
Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать. В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.
В нашем случае функция не имеет смысла, при х=-1 и х=0
Дискриминант больше нуля - два корня
Дискриминант равен нулю. В уравнении 1 корень
Дискриминант меньше нуля, значит нет действительных корней
2)
Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать.
В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.
В нашем случае функция не имеет смысла, при х=-1 и х=0
Избавимся от единицы, использовав основное тригонометрическое тождество.
sin²x + cos²x + 5sin²x - 3sinxcosx - 2cos²x = 1
5sin²x - 3sinxcosx - 2cos²x = 0
Перед нами однородное уравнение.
Однородные тригонометрические уравнения решаются делением на какую-то величину.
Разделим на cos²x ( cosx ≠ 0).
5tg²x - 3tgx - 2 = 0
Пусть t = tgx.
5t² - 3t - 2 = 0
D = 9 + 4•2•5 = 49 = 7²
t1 = (3 + 7)/10 = 1
t2 = (3 - 7)/10 = -4/10 = -2/5
Обратная замена:
tgx = 1
x = π/4 + πn, n ∈ Z
tgx = -2/5
x = arctg(-2/5) + πn, n ∈ Z.