Решите уравнения и неравенства
V-корень
1)V(2x^2-3x+4)=3
2)V(13-x^2)=V(x+1)
3)81*9^(3x)+x*9^(3x)=0
4)log (x-10)по основанию 5=2+log2 по основанию 5
5)lg(3-x)-lg(x-2)=2lg2
6)(5/6)*13V(x)+5=(5/6)*7*V(x)-45
7)2sin^(2) x=cosx +2
8)cosx =0,5 V2
9)x(x+2)/x-3<или = 0
10)9* 2x/3<243
11)log (6-x) по основанию (1/2)>-2
Найти одз
так наверно но не точно там
Объяснение:
Не будем доплачивать сотруднику с самой большой зарплатой до тех пор, пока его зарплата не сравняется с той, которая была самой маленькой (если сотрудников с наибольшей зарплатой несколько, то выберем любого из них). Таким образом, наименьшую зарплату будут иметь по крайней мере двое сотрудников. Затем, снова выберем сотрудника с самой большой зарплатой и не будем ему доплачивать, пока его зарплата не сравняется с той, которая была самой маленькой, и получим не менее трёх сотрудников с одинаковой зарплатой. Проделав такую операцию не более 9 раз, Ваня сможет уравнять все зарплаты.
Объяснение:
Монета брошена шесть раз.
В результате одного броска выпадет О или Р (Орел или Решка) с равной вероятностью 0,5.
Если записать результат 6 бросков, то получим цепочку, состоящую из 6 символов О или Р.
Например, исход - цепочка ООРОРО означает, что первый раз выпал Орел,
второй раз - Орел, третий раз - Решка и т.д..
Так как при каждом броске имеем 2 варианта (О или Р), а бросков 6,
то всего исходов (цепочек) имеем 26= 64. (В общем случае при n бросках имеем 2n исходов).
Пусть событие А = "Орел выпадет не менее трех раз" (3 или больше 3-х раз).
Противоположное событие (не А) = "Орел выпадет 1 раз, 2 раза или ни разу".
Подсчитаем количество исходов, при которых в цепочке
Орел будет встречаться 0, 1 или 2 раза.
- 1 исход (Орел не выпал ни разу)
Р, ОР, ООРООО, ОООРОО, РО, Р. 6 исходов (Орел выпал 1 раз).
С62 = 6!/(2!*4!) = 6*5/2=15 исходов, (Орел выпал 2 раза).
Всего благоприятных исходов (орел выпал более двух раз, т.е. не менее трех)
64 - (1+6+15) = 42.
Р = 42/64 = 0,65625