Многое в поставленной вами задачи зависит от того Какие значения может принимать Х изменяясь в своей области определения . Кроме того важно сразу отметить что если вы ищете аналитическую закономерность (виде некоторой формулы) то её может и не быть.
Если множество значений Х дискретно то можно использовать любой из стандартных методов интерполяции : линейную, дробно- линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д
Приведу пример нахождения интерполяционного многочлена Тейлора по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; P(X2)=1+A1*1+A2*1*1=2 P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости между X и Y. Естественно этот результат не единственен. Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов»
принимать Х изменяясь в своей области определения . Кроме того важно
сразу отметить что если вы ищете аналитическую закономерность (виде
некоторой формулы) то её может и не быть.
Если множество значений Х дискретно то можно использовать
любой из стандартных методов интерполяции : линейную, дробно-
линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д
Приведу пример нахождения интерполяционного многочлена Тейлора
по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1;
многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2-
подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3
а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений:
P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1;
P(X2)=1+A1*1+A2*1*1=2
P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк
Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2
Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости
между X и Y. Естественно этот результат не единственен.
Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов»
b)
3
x
+3
x+2
<270
3
x
+3
2
∗3
x
<270
3
x
+9∗3
x
<270
10∗3
x
<270 ∣:10
3
x
<27
3
x
<3
3
x<3.
ответ: x∈(-∞;3).
h)
\4*4^x-2\geq 7*2^x\\4*(2^2)^x-7*2^x-2\geq 0\\4*2^{2x}-7*2^x-2\geq 0\\\
4∗4
x
−2≥7∗2
x
4∗(2
2
)
x
−7∗2
x
−2≥0
4∗2
2x
−7∗2
x
−2≥0
Пусть 2ˣ=t ⇒
\4t^2-7t-2\geq 0\\4t^2-8t+t-2\geq 0\\4t*(t-2)+(t-2)\geq 0\\(t-2)*(4t+1)\geq 0\\(2^x-2)*(4*2^x+1)\geq 0\\4*2^x+1 > 0\ \ \ \ \Rightarrow\\2^x-2\geq 0\\2^x\geq 2\\2^x\geq 2^1\\x\geq 1.\
4t
2
−7t−2≥0
4t
2
−8t+t−2≥0
4t∗(t−2)+(t−2)≥0
(t−2)∗(4t+1)≥0
(2
x
−2)∗(4∗2
x
+1)≥0
4∗2
x
+1>0 ⇒
2
x
−2≥0
2
x
≥2
2
x
≥2
1
x≥1.
ответ: x∈[1;+∞).