Котята от "1", "2", ... , "13" . среди них обязательно 2 рыжих, пусть это будут (не ограничивая общности "12", "13") добавим вместо них котят "14", "15", у нас снова 13 котят, среди них два рыжих, пусть это "14", "15" вместо "14", "15" возьмем "16". "17", опять же 13 котят, среди них два рыжих, не ограничивая общности (все равно кого из них считать рыжим --нумеровали мы их произвольно) пусть это будут "16", "17"
итого у нас уже есть шесть рыжих котят "12", "13", "14", "15", "16", "17"
рассмотрим котят "4", "5", "6", ..."17", (учтем что некоторые "уже рыжие"), среди 14-х котят один белый, пусть это будет "11", аналогично рассмотрим последовательно партии котят "3", "4", "10", "12", ..., "17" "2", "3", ..."9", "12", ..."17" "1", "2", ..."8", "12", ..., "17" и определим что "8","9", "10", "11" - серые котята
итого у нас имеется известных 6 рыжих котят, и 4 серых, в любой группе, из этих 6 рыжих, 4 серых, любые 3 другие из оставшихся 17-10=7 котят будут белыми (13-6-4=3 котята, 3 из 13 в группе белые)
V - знак квадратного корня V(5x+7) - V(x+4) =4x+3 ОДЗ: {5x+7>=0 {x+4>=0
{5x>= -7 {x>= -4
{x>=-7/5 {x>= -4
Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4 У нас получилась следующая ОДЗ: {x>= -7/5 {x>= -4 {x>= -3/4 Решением этой системы будет промежуток: [-3/4; + бесконечность) Итак, возводим в квадрат: (5x+7)^2 - (x+4)^2 = (4x+3)^2 25x^2+70x+49-x^2-8x-16=16x^2+24x+9 24x^2+62x+33= 16x^2+24x+9 24x^2+62x+33-16x^2-24x-9=0 8x^2+38x+24=0 |:2 4x^2+19x+12=0 D= 19^2-4*4*12=169 x1=(-19-13)/8=-4 - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.) x2=(-19+13)/8= -3/4 Получается, что уравнение имеет один корень => k=1 Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4 Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2 ответ:2
Котята от "1", "2", ... , "13" . среди них обязательно 2 рыжих, пусть это будут (не ограничивая общности "12", "13")
добавим вместо них котят "14", "15", у нас снова 13 котят, среди них два рыжих, пусть это "14", "15"
вместо "14", "15" возьмем "16". "17", опять же 13 котят, среди них два рыжих, не ограничивая общности (все равно кого из них считать рыжим --нумеровали мы их произвольно) пусть это будут "16", "17"
итого у нас уже есть шесть рыжих котят "12", "13", "14", "15", "16", "17"
рассмотрим котят "4", "5", "6", ..."17", (учтем что некоторые "уже рыжие"), среди 14-х котят один белый, пусть это будет "11",
аналогично рассмотрим последовательно партии котят "3", "4", "10", "12", ..., "17"
"2", "3", ..."9", "12", ..."17"
"1", "2", ..."8", "12", ..., "17"
и определим что "8","9", "10", "11" - серые котята
итого у нас имеется известных 6 рыжих котят, и 4 серых, в любой группе, из этих 6 рыжих, 4 серых, любые 3 другие из оставшихся 17-10=7 котят будут белыми (13-6-4=3 котята, 3 из 13 в группе белые)
итого белых котят 7
ответ: 7
V(5x+7) - V(x+4) =4x+3
ОДЗ:
{5x+7>=0
{x+4>=0
{5x>= -7
{x>= -4
{x>=-7/5
{x>= -4
Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4
У нас получилась следующая ОДЗ:
{x>= -7/5
{x>= -4
{x>= -3/4
Решением этой системы будет промежуток: [-3/4; + бесконечность)
Итак, возводим в квадрат:
(5x+7)^2 - (x+4)^2 = (4x+3)^2
25x^2+70x+49-x^2-8x-16=16x^2+24x+9
24x^2+62x+33= 16x^2+24x+9
24x^2+62x+33-16x^2-24x-9=0
8x^2+38x+24=0 |:2
4x^2+19x+12=0
D= 19^2-4*4*12=169
x1=(-19-13)/8=-4 - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.)
x2=(-19+13)/8= -3/4
Получается, что уравнение имеет один корень => k=1
Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4
Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2
ответ:2