По формулам сокращенного умножения сумма кубов двух чисел равна:
a³ + b³ = (a + b) * (a² – a * b + b²),
где a² — квадрат первого числа, b — квадрат второго числа, a * b — произведение первого числа на второе. Таким образом, скобка (a² – a * b + b²) представляет собой неполный квадрат разности чисел a и b.
По формулам сокращенного умножения сумма кубов двух чисел равна:
a³ + b³ = (a + b) * (a² – a * b + b²),
где a² — квадрат первого числа, b — квадрат второго числа, a * b — произведение первого числа на второе. Таким образом, скобка (a² – a * b + b²) представляет собой неполный квадрат разности чисел a и b.
Подставим данные по условию числа в формулу:
3³ + 5³ = (3 + 5) * (3² – 3 * 5 + 5²) = 8 * (9 – 15 + 25) = 8 * 19 = 152.
Проверка:
3 * 3 * 3 + 5 * 5 * 5 = 152;
27 + 125 = 152;
152 = 152.
ответ: 3³ + 5³ = 152.
57
Объяснение:
Докажем, что среди написанных чисел есть одинаковые.
Действительно, если все написанные числа разные, то различных
попарных сумм должно быть не менее четырёх, например, суммы
одного числа с четырьмя остальными. Значит, среди попарных сумм
есть суммы двух одинаковых натуральных чисел. Такая сумма
должна быть чётной, в нашем списке это число 80. Отсюда следует,
что на доске есть число 40 и оно написано не меньше двух раз.
Пар равных чисел, отличных от 40, на доске быть не может, иначе
среди попарных сумм было бы ещё одно чётное число. Обозначим одно из трёх оставшихся чисел через х, тогда среди
попарных сумм есть число 40 , + х значит, х равно либо 97 40 57, − =
либо 63 40 23. − =
Наборы 40, 40, 40, 40, 57 и 40, 40, 40, 40, 23 нам не подходят, так как
в них всего две попарные суммы. Значит на доске написан набор 40,
40, 40, 57, 23. Таким образом, наибольшее число на доске — это 57.