Для того чтобы доказать, что множество не замкнуто, нам достаточно найти два иррациональных числа - сложить их и в результате получить рациональное число. То есть сумма двух иррациональных чисел не всегда иррациональна, то есть не замкнуто на иррациональности. Возьмем простейшее иррациональное число √2 и соответсвенно -√2 сложим √2 + (-√2) = √2 - √2 = 0 0 число рациональное . Тем самым мы нашли два иррациональных числа, которые при сложении дают рациональное число Так же доказывается незамкнутость иррациональных чисел при 1. разности 1+√3 и √3 равна 1 2. произведении √2 и 2√2 равно 4 3. делении 2√2 и √2 равно 2
Докажем что √2 иррациональное число Предположим что оно рациональное то есть его можно представить в виде несократимой дроби √2=a/b где a , целые и взаимнопросты (в противном случае они бы сократились) замечаем что a b оба не четные (если бы были оба четными то сократились на 2) Возводим в квадрат 2=a²/b² 2b²=a² замечаем что число 2b² четное, значит и a² тоже четное. заменяем a=2c и подставляем в 2b²=(2c)²=4c² b²=2c² получили что и b четное. То есть a b четные и их можно сократить, но мы предполагали что они взаимнопросты, и тем самым допустили противоречие. Значит √2 нельзя представить в виде дроби и оно иррациональное число
Возьмем простейшее иррациональное число √2 и соответсвенно -√2
сложим √2 + (-√2) = √2 - √2 = 0
0 число рациональное . Тем самым мы нашли два иррациональных числа, которые при сложении дают рациональное число
Так же доказывается незамкнутость иррациональных чисел при
1. разности 1+√3 и √3 равна 1
2. произведении √2 и 2√2 равно 4
3. делении 2√2 и √2 равно 2
Докажем что √2 иррациональное число
Предположим что оно рациональное то есть его можно представить в виде несократимой дроби √2=a/b где a , целые и взаимнопросты (в противном случае они бы сократились) замечаем что a b оба не четные (если бы были оба четными то сократились на 2)
Возводим в квадрат 2=a²/b² 2b²=a² замечаем что число 2b² четное, значит и a² тоже четное. заменяем a=2c и подставляем в 2b²=(2c)²=4c²
b²=2c² получили что и b четное. То есть a b четные и их можно сократить, но мы предполагали что они взаимнопросты, и тем самым допустили противоречие. Значит √2 нельзя представить в виде дроби и оно иррациональное число
3t² - 5t -8 = 0
D = 121
t₁ = 16/6 t₂ = -1
Cosx = 16/6 Сosx = -1
нет решений x = π + 2πk , k ∈ Z
2) 8(1 - Sin²x) -14Sinx +1 = 0
8 - 8Sin²x -14Sinx +1 = 0
-8Sin²x -14Sinx +9 = 0
Sinx = t
-8t² -14t +9 = 0
решаем по чётному коэффициенту:
t = (7 +-√(49 +72))/(-8) = (7 +-11)/(-8)
t₁ = 1/2 t₂ =-18/8
Sinx = 1/2 Sinx = -18/8
x = (-1)ⁿπ/6 + nπ, n ∈ Z нет решений.
3)5sin^2x+14 sinxcosx+8cos^2x=0 | : Сos²x ≠ 0
5tg²x + 14tgx +8 = 0
tgx = t
5t² +14t +8 = 0
t = (-7 +-√(49 -40))/5 = (-7 +- 3)/5
t₁ = -2 t₂ = -4/5
tgx = -2 tgx = -4/5
x = -arctg2 + nπ, n ∈ Z x = -arctg 4/5 + πk , k∈Z
4)2tgx-9ctgx +3=0 | * tgx
2tg²x - 9 +3tgx = 0
tgx = t
2t² + 3t -9 = 0
D = 81
t = (-3 +-9)/4
t₁ = -3 t₂ = 6/4 = 1,5
tgx = -3 tgx = 1,5
x = -arctg3 + πk , k ∈ Z x = arctg1,5 + πn , n ∈Z
5) sin^2x-5cos^2x=2sin2x
Sin²x - 5Cos²x - 4SinxCosx = 0 | : Cos²x ≠0
tg²x - 5 - 4tgx = 0
по т. Виета
tgx = 5 или tgx = -1
x = arctg5 + πk , k ∈ Z x = -π/4 + πn , n ∈Z
6) 5cos2x+5=8sin2x-6sin^2x
5( 1 - 2Sin²x) + 5 = 16SinxCosx - 6Sin²x
5 - 10 Sin²x +5 -16SinxCosx +6Sin²x = 0
-4Sin²x - 16SinxCosx +10*1 = 0
-4Sin²x - 16SinxCosx +10(Sin²x + Cos²x) = 0
-4Sin²x -16SinxCosx +10Sin²x +10Cos²x= 0
6Sin²x -16SinxCosx + 10Cos²x = 0
3Sin²x - 8SinxCosx +5Cos²x = 0 | : Cos²x≠0
3tg²x - 8tgx +5 = 0
tgx = (4 +-√1)/3
tgx = 4/3 или tgx = 1
x = arctg4/3 + πk , k ∈ Z x = π/4 + πn , n ∈Z