Решите , выделяя три этапа моделирования. в книге 140 страниц. она была прочитана за 3 дня. в пятницу знайка прочитал 1,2 раза меньше страниц, чем в субботу, и на 20 страниц больше, чем в воскресенье. сколько страниц прочитал знайка в субботу !
Решение а) Чтобы логирифм по основанию 5 существовал. Надо чтобы выражение под знаком логарифма было больше 0. ⇒ 3-2x-x^2 >0. Решаем это нер-во, и получаем ответ. 3-2x-x^2>0 x^2+2x-3<0 (x+3)(x-1)<0 по числовой оси, х∈(-3;1) ответ: x∈(-3;1) - заметьте, не включительно! б) Условие переписано не верно. Но как я понял, оно такое: log((3x+2)/(2x-1)) по основанию х+5. - если такой пример, то решение такое: Пишем ОДЗ. Основание должно быть больше 0 и не равно 1. ⇒ x+5>0; x+5≠1, из ОДЗ получаем, что x > -5 и x ≠ -4. Решаем выражение под знаком логарифма, оно как и в первом примере должно быть больше 0. (3x+2)/(2x-1)>0 x≠(1/2) из неравенства получаем, что x∈(-беск до 1/2)и(от1/2 до + беск.) СМОТРИМ на ОДЗ. совмещаем. Получаем, что х∈(-5 до -4) и (от -4 до 1/2) и (от 1/2 до + беск.) ответ: x∈(-5;-4)∨(-4;1/2)∨(1/2;+беск)
а) Чтобы логирифм по основанию 5 существовал. Надо чтобы выражение под знаком логарифма было больше 0. ⇒ 3-2x-x^2 >0. Решаем это нер-во, и получаем ответ.
3-2x-x^2>0
x^2+2x-3<0
(x+3)(x-1)<0
по числовой оси, х∈(-3;1)
ответ: x∈(-3;1) - заметьте, не включительно!
б) Условие переписано не верно. Но как я понял, оно такое:
log((3x+2)/(2x-1)) по основанию х+5. - если такой пример, то решение такое:
Пишем ОДЗ. Основание должно быть больше 0 и не равно 1. ⇒
x+5>0; x+5≠1, из ОДЗ получаем, что x > -5 и x ≠ -4.
Решаем выражение под знаком логарифма, оно как и в первом примере должно быть больше 0.
(3x+2)/(2x-1)>0
x≠(1/2) из неравенства получаем, что x∈(-беск до 1/2)и(от1/2 до + беск.)
СМОТРИМ на ОДЗ. совмещаем. Получаем, что х∈(-5 до -4) и (от -4 до 1/2) и (от 1/2 до + беск.)
ответ: x∈(-5;-4)∨(-4;1/2)∨(1/2;+беск)
А) 3n^2 + n - 4 = n(3n+1) - 4
Если n четное, то n(3n+1) тоже четное, и n(3n+1) - 4 четное.
Если n нечетное, то 3n+1 четное, тогда n(3n+1) - 4 опять четное.
При любом n это выражение делится на 2, то есть оно четное.
Б) 2n^3 + 7n + 3 = 2n^3 + 4n + 3n + 3 = 2n(n^2+2) + 3(n+1)
Второе выражение делится на 3 при любом n.
Разберем первое выражение.
Само число n при деление на 3 может давать остаток 0, 1 или 2.
1) Остаток равен 0, то есть n делится на 3.
Тогда и все выражение делится на 3.
2) Остаток равен 1, запишем так: n = 3k + 1.
Тогда n^2 + 2 = (3k+1)^2 + 2 = 9k^2 +. 6k + 1 + 2 = 9k^2 + 6k + 3.
Оно делится на 3.
3) Остаток равен 2, тогда n = 3k + 2.
n^2 + 2 = (3k+2)^2 + 2 = 9k^2 + 12k + 4 + 2 = 9k^2 + 12k + 6
Оно тоже делится на 3.
Таким образом, при любом n выражение 2n(n^2 + 2) делится на 3.
Значит, и всё выражение 2n^3 + 7n + 3 делится на 3.