1) чтобы узнать проходит ли график функции через обозначенные точки, необходимо для начала указанные координаты подставить в уравнение. как? например 1я точка А (3;0). 3 - это х, 0 - это у. проверяем: 0 = -2*3 + 3 0 неравен -3; то есть график функции не проходит через эту точку. если бы обе части уравнения были равны друг другу, то тогда бы проходил. 2) чтобы найти точки пересечения графиков с осями координат, нужно решить уравнения функций, где сначала х = 0, затем у. то есть 1) 2х - 6у = 10 2*0 - 6у = 10 -6у = 10 у = - 1 целая 2/3 точка пересечения с осью ох (0; -1 целая 2/3) затем ищем точку пересечения с осью оу: 2х -6*0 = 10 2х = 10 х = 5 (5;0)
где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.
0 = -2*3 + 3
0 неравен -3; то есть график функции не проходит через эту точку. если бы обе части уравнения были равны друг другу, то тогда бы проходил.
2) чтобы найти точки пересечения графиков с осями координат, нужно решить уравнения функций, где сначала х = 0, затем у.
то есть 1) 2х - 6у = 10
2*0 - 6у = 10
-6у = 10
у = - 1 целая 2/3
точка пересечения с осью ох (0; -1 целая 2/3)
затем ищем точку пересечения с осью оу:
2х -6*0 = 10
2х = 10
х = 5
(5;0)
Объяснение:
Решение квадратного неравенства
Неравенство вида
где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.