Решите задачи:
1)Лодка проплыла расстояние между пристанями вниз по течению реки и вернулась обратно, затратив на весь путь 5 ч. Собственная скорость лодки равна 10 км/ч, а скорость течения реки равна 2 км/ч. Сколько времени лодка плыла по течению реки.
2)Из двух пунктов, расстояние между которыми равно 245 км, одновременно навстречу друг другу выехали автобус и автомобиль. Они встретились через 2,5 ч. С какой скоростью ехал каждый из них, если известно, что скорость автомобиля на 15 км/ч больше скорости автобуса?
Искомую сумму можно записать так (номера под индексами указывают только на порядок, а не на значение):
При этом все i изменяются от 1 до 7, но не равны друг другу. То же касается и j. То есть, что бы мы не выбирали, цифры в сумме будут просто меняться местами. А от перестановки мест слагаемых значение суммы не изменяется. Поэтому сумма постоянна.
Чтобы число делилось на 4, две последние цифры должны образовывать число кратное 4, т.е. последняя цифра всегда четная и равна 0, 4 или 8 (т.к. только 60, 64, 68 кратны 4), а значит среди остальных звездочек имеется только одна четная и три нечетных цифры.
Чтобы число делилось на 3, сумма всех его цифр должна быть кратна 3. Заметим, что цифры 0, 4, 8 дают остатки при делении на 3 соответственно 0, 1 и 2, поэтому, какие бы цифры не стояли вместо первых четырех звездочек, т.е. какой бы не была сумма всех цифр числа без последней цифры, только одна из цифр 0, 4, 8 подходит в качестве последней. Например, если сумма всех цифр числа без последней цифры имеет остаток от деления на 3 равный 2, то чтобы число делилось на 3, в качестве последней цифры подойдет только 4, т.к. у 4 остаток при делении на 3 равен 1. Аналогично, если сумма всех цифр, кроме последней, имеет остаток 1, то в качестве последней цифры подойдет только 8 и если эта сумма кратна 3, то последняя цифра - 0. Таким образом, общее количество вариантов равно количеству вариантов для первых четырех звездочек, а последняя звездочка для каждого такого варианта определяется однозначно.
Итак, каждая звездочка из первых четырех может принимать пять значений. Если она четная, то это 0,2,4,6,8 и если она нечетная, то это 1,3,5,7,9. Также, мы знаем, что четная звездочка только одна, т.е. она может занимать одну из 4 позиций. Отсюда общее количество искомых чисел равно 4*5⁴=2500.