Решите задачу. Два велосипедиста одновременно отправляются в 112-километровый пробег. Первый едет со скоростью на 9км/ч большей, чем второй, и приюывает к финишу на 4 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
найти максимум, х∈(0, 40).
найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х
она равна 3х²-208х+2560
найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0
1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3=
=(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3=
=(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16
ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
вот как-то так...-))
6x(x^2-4)=0
6x(x-2)(x+2)=0
6x=0 или x-2=0 или x+2=0
x=0 x=2 x=-2
ответ:x=0
x=2
x=-2
б). 25x^3- 10x^2 +x =0
x(25x^2-10x+1)=0
x(5x-1)^2=0
x=0 или (5x-1)^2=0
5x-1=0
5x=1
x=1/5
ответ:x=0
x=1/5
в). 2x^4 + 6x^3 – 8x^2- 24x = 0
2x^2(x^2-4)+6x(x^2-4)=0
(2x^2+6x)(x^2-4)=0
2x(x-2)(x+2)(x+3)=0
2x=0 или x-2=0 или x+2=0 или x+3=0
x=0 x=2 x=-2 x=-3
ответ:x=0
x=2
x=-2
x=-3