Решите задачу с системы уравнений Два крана, работая вместе, загрузили баржу за 6 часов. За какое время может загрузить баржу каждый кран, работая отдельно, если один из них загружает на 5 часов быстрее второго.
Поскольку переменная х входит в чётной степени, то график заданной функции симметричен относительно оси у. Производная этой функции равна нулю пр х = 0. Подставив это значение в уравнение функции, получаем у = 1. Исследуем поведение производной вблизи точки х = 0. х 0.5 0 -0.5 у' -0.6875 0 0.6875. Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1. Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809. ответ при (х=+-3) : умакс = 1, умин = -809.
1) на первые три места цифра 2 не используется, так как данное четырехзначное число не будет являться четным. На первое место мы можем поставить любое число из трех чисел 1; 3;7, то есть на втором месте так как одна цифра уже используется, на третьем месте - 1 цифра и на четвертом месте четное число 2)
По правилу произведения всего сделать можно Тут у нас два варианта на последнем месте может стоять цифра 2 или 4. Если на последнем месте будет цифра 2, то, аналогично с примера 1) имеем, что можно составить четырехзначное число(цифра 2 на последнем месте), также и для цифры 4 тоже всего если цифра 4 на последнем месте).
Производная этой функции равна нулю пр х = 0.
Подставив это значение в уравнение функции, получаем у = 1.
Исследуем поведение производной вблизи точки х = 0.
х 0.5 0 -0.5
у' -0.6875 0 0.6875.
Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1.
Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809.
ответ при (х=+-3) : умакс = 1,
умин = -809.
По правилу произведения всего сделать можно Тут у нас два варианта на последнем месте может стоять цифра 2 или 4.
Если на последнем месте будет цифра 2, то, аналогично с примера 1) имеем, что можно составить четырехзначное число(цифра 2 на последнем месте), также и для цифры 4 тоже всего если цифра 4 на последнем месте).
По правилу сложения имеем окончательный ответ