Решите задачу с уровнения На заводе в трех цеках изготовили 6000 деталей. Во втором цехе изготовили в двое больше диталей чем в первом, а в третьем на 500 меньше
Из первого уравнения x1 + x2 = 5. Тогда x1^2 + 2 x1 x2 + x2^2 = 25 и, сравнивая полученное со вторым уравнением, x1 x2 = 6. Тогда p = -2 * 5 * 6 = -60 q = 6^2 = 36
Для успокоения совести можно было бы проверить, что система x1 + x2 = 5, x1 x2 = 6 разрешима. В данном случае всё хорошо - корни даже целые, это 2 и 3.
ответ. -60.
Этот же ответ можно было бы получить, вспомнив формулы Виета. Впрочем, они выводятся точно так же, как и в решении.
1)
{
x
+
2
y
=
0
,
5
x
+
y
=
−
18
;
2)
{
2
x
−
5
y
=
10
,
4
x
−
y
=
2
;
3)
{
x
−
2
y
=
1
,
y
−
x
=
−
2
;
4)
{
x
+
y
=
−
3
,
x
−
y
=
−
1.
Решение 1
{
x
+
2
y
=
0
,
5
x
+
y
=
−
18
;
x + 2y = 0
x = −2y
Решение рисунок 1
5x + y = −18
y = −18 − 5x
Решение рисунок 2
Решение рисунок 3
Графики уравнений пересекаются в точке (−4;2), следовательно данная пара чисел является решением данной системы уравнения.
Решение 2
{
2
x
−
5
y
=
10
,
4
x
−
y
=
2
;
2x − 5y = 10
−5y = 10 − 2x
y
=
2
5
x
−
2
Решение рисунок 1
4x − y = 2
−y = 2 − 4x
y = 4x − 2
Решение рисунок 2
Решение рисунок 3
Графики уравнений пересекаются в точке (0;−2), следовательно данная пара чисел является решением данной системы уравнения.
Решение 3
{
x
−
2
y
=
1
,
y
−
x
=
−
2
;
x − 2y = 1
x = 1 + 2y
Решение рисунок 1
y − x = −2
y = x − 2
Решение рисунок 2
Решение рисунок 3
Графики уравнений пересекаются в точке (3;1), следовательно данная пара чисел является решением данной системы уравнения.
Решение 4
{
x
+
y
=
−
3
,
x
−
y
=
−
1.
x + y = −3
y = −3 − x
x − y = −1
−y = −1 − x
y = x + 1
Графики уравнений пересекаются в точке (−2;−1), следовательно данная пара чисел является решением данной системы уравнения.
Объяснение:
x^4 - 2 (x1 + x2) x^3 + (x1^2 + 4 x1 x2 + x2^2) x^2 - 2 (x1 + x2) x1 x2 x + x1^2 x2^2
Приравнивая коэффициенты при одинаковых степенях, находим, что
2(x1 + x2) = 10
x1^2 + 4 x1 x2 + x^2 = 37
-2 (x1 + x2) x1 x2 = p
x1^2 x2^2 = q
Из первого уравнения x1 + x2 = 5. Тогда x1^2 + 2 x1 x2 + x2^2 = 25 и, сравнивая полученное со вторым уравнением, x1 x2 = 6. Тогда
p = -2 * 5 * 6 = -60
q = 6^2 = 36
Для успокоения совести можно было бы проверить, что система x1 + x2 = 5, x1 x2 = 6 разрешима. В данном случае всё хорошо - корни даже целые, это 2 и 3.
ответ. -60.
Этот же ответ можно было бы получить, вспомнив формулы Виета. Впрочем, они выводятся точно так же, как и в решении.