Левая часть положительна только на интервалах (-9,-3) и (2,6), а правая положительна всегда (0 не корень). Поэтому, если нас интересуют только целые корни, то они могут быть только -8,-7,-6,-5,-4, 3, 4, 5. 1) -8 не подходит, т.к. слева есть множитель x+3, и, значит -8+3=-5 должно делить правую часть 24*8^2, что не выполняется 2) аналогично, -7 не подходит, т.к. слева есть множитель -7-2=-9, который должен делить 24*9^2, что не выполняется. 3) -6 - корень (проверяем подстановкой) 4) -5 - не корень, т.к. 6-(-5)=11 - не делит правую часть 5) -4 - не корень, т,к. 9-4=5 не делит правую часть 6) 3 - корень (проверяем подстановкой) 7) 4 - не корень, т.к. слева есть множитель 4+3=7, а справа его нет 8) 5 не корень, т.к. слева есть 9+5=14, а правая часть на 7 не делится. Итак, целые корни -6 и 3.
{ x+2y=6 {х=6-2у {х=6-2у
{ -4x+y=6. {-4х+у=6 {-4(6-2у)+у=6
Решим отдельно второе уравнение системы
-4(6-2у)+у=6
-24+8у+у=6
9у=24=6
9у=6+24
9у=30
у=30/9
у=10/3
Вернемся в систему
{х=6-2у {х=6-2*(10/3) {х=18/3-20/3 {х=-2/3
{у=10/3 {у=10/3 {у=10/3 {у=3 целых 1/3
ответ: (-2/3; 3 целых 1/3)
2. Решить систему уравнений сложения:
{ x+5y=12
{ x-2y=5
умножим второе уравнение на (-1)
{ x+5y=12
{ -x+2y=-5
Сложим оба уравнения
{ x+5y=12 {х+5*1=12 {х+5=12 {х=12-5 {х=7
{ 7y=7 {у=1 {у=1 {у=1 {у=1
ответ: (7;1)
1) -8 не подходит, т.к. слева есть множитель x+3, и, значит -8+3=-5 должно делить правую часть 24*8^2, что не выполняется
2) аналогично, -7 не подходит, т.к. слева есть множитель -7-2=-9, который должен делить 24*9^2, что не выполняется.
3) -6 - корень (проверяем подстановкой)
4) -5 - не корень, т.к. 6-(-5)=11 - не делит правую часть
5) -4 - не корень, т,к. 9-4=5 не делит правую часть
6) 3 - корень (проверяем подстановкой)
7) 4 - не корень, т.к. слева есть множитель 4+3=7, а справа его нет
8) 5 не корень, т.к. слева есть 9+5=14, а правая часть на 7 не делится.
Итак, целые корни -6 и 3.