Исследуем поведение функции вблизи точек, где её аналитическое выражение меняется . Найдём левосторонние и правосторонние пределы в точках х=0, х=2 , х=5 .
При х=0 функция имеет разрыв 1 рода .
При х=2 функция непрерывна.
При х=5 функция имеет разрыв 2 рода .
График функции нарисован сплошной линией.
На 1 рисунке нет чертежа функции при х>5 , для которого прямая х=5 является асимптотой , так как он не умещается при данном масштабе. Этот график полностью начерчен отдельно на 2 рисунке, чтобы вы понимали, как он расположен. Но для вашей функции берётся только та часть графика, которая нарисована для х>5 .
х|x| = x
При х ≥ 0 уравнение имеет вид: х*x = x
х² = x
х² - x = 0
х(х -1) = 0
х = 0 или х = 1
(т.е при х ≥ 0 уравнение имеет два корня)
При х < 0 уравнение имеет вид: х*(-x) = x
- х² = x
- х² - x = 0
- х(х +1) = 0
х = 0 или х = - 1
(т.е при х < 0 уравнение тоже имеет два корня)
Имеем:
при х ≥ 0 при х < 0
х = 0 или х = 1 или х = 0 или х = - 1
=> корни: х = 0 или х = 1 или х = - 1
ответ: 3.
Исследуем поведение функции вблизи точек, где её аналитическое выражение меняется . Найдём левосторонние и правосторонние пределы в точках х=0, х=2 , х=5 .
При х=0 функция имеет разрыв 1 рода .
При х=2 функция непрерывна.
При х=5 функция имеет разрыв 2 рода .
График функции нарисован сплошной линией.
На 1 рисунке нет чертежа функции при х>5 , для которого прямая х=5 является асимптотой , так как он не умещается при данном масштабе. Этот график полностью начерчен отдельно на 2 рисунке, чтобы вы понимали, как он расположен. Но для вашей функции берётся только та часть графика, которая нарисована для х>5 .