Если считать, что 4 км - это расстояние от точки старта лодки до точки финиша, и точка финиша лежит ниже точки старта по течению то мы имеем
3(х+2) - 5(х-2) = 4
-2х + 16 = 4
х = 6 км/ч
Вариант 2
Если считать, что 4 км - это расстояние от точки старта лодки до точки финиша, и точка финиша лежит выше точки старта по течению то мы имеем
5(х-2) - 3(х+2) = 4
2х - 16 = 4
х = 10 км/ч
Вариант 3
Если считать, что 4 км - это расстояние, которое лодка вниз по течению плюс вверх по течению, то так не может быть, т.к. при любой собственной скорости лодки, она по течению не менее 3час *2 км/час = 6 км, что больше чем суммарное расстояние = 4 км
Каждый год долг увеличивается в 1+0.1=1.1 раз. По условию, долг уменьшается равномерно. Значит после первой выплаты сумма долга станет равна 3-(3/4)=2.25, после второй 3-2·(3/4)=1.5 и т.д.
Пусть х - скорость лодки
Тогда
Вариант 1
Если считать, что 4 км - это расстояние от точки старта лодки до точки финиша, и точка финиша лежит ниже точки старта по течению то мы имеем
3(х+2) - 5(х-2) = 4
-2х + 16 = 4
х = 6 км/ч
Вариант 2
Если считать, что 4 км - это расстояние от точки старта лодки до точки финиша, и точка финиша лежит выше точки старта по течению то мы имеем
5(х-2) - 3(х+2) = 4
2х - 16 = 4
х = 10 км/ч
Вариант 3
Если считать, что 4 км - это расстояние, которое лодка вниз по течению плюс вверх по течению, то так не может быть, т.к. при любой собственной скорости лодки, она по течению не менее 3час *2 км/час = 6 км, что больше чем суммарное расстояние = 4 км
Решение по стандартной схеме.
S=3 млн, r=10%, x₁+x₂+x₃+x₄-?
Каждый год долг увеличивается в 1+0.1=1.1 раз. По условию, долг уменьшается равномерно. Значит после первой выплаты сумма долга станет равна 3-(3/4)=2.25, после второй 3-2·(3/4)=1.5 и т.д.
Расписываем каждую выплату:
1) 3·1.1-x₁=2.25 ⇒ x₁=3.3-2.25=1.05 млн
2) 2.25·1.1-x₂=1.5 ⇒ x₂=2.475-1.5=0.975 млн
3) 1,5·1.1-x₃=0.75 ⇒ x₃=1.65-0.75=0.9 млн
4) 0.75·1.1-x₄=0 ⇒ x₄=0.825 млн
Сумма всех выплат составит
x₁+x₂+x₃+x₄=1.05+0.975+0.9+0.825=3.75 млн
ответ: 3.75 млн р.