ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.
нужно рассматривать две разных ситуации:
1) x>=0
тогда y = 2x - 1/2 x^2 - x = - 1/2 x^2 + x
парабола, ветви вниз, корни 0 и 2
т.е. справа от оси У рисуем только часть этой параболы (от х=0)
2) x < 0
тогда у = 2*(-х) - 1/2 x^2 - (-x) = -2x -1/2 x^2 + x = -1/2 x^2 - x
парабола, ветви вниз, корни 0 и -2
т.е. слева от оси У рисуем только часть этой параболы (до х=0)
(получится похоже на то, как птицу-чайку рисуют ---два крыла...)
а вот про прямую у = kx ---точка (0; 0) принадлежит графику... и прямой с любым k...
т.е. общая точка будет всегда (т.е. нет таких k...)
Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.