Квадратное уравнение может иметь один или два корня. Значит, из трёх чисел можно составить шесть приведённых (см. об этом ниже) уравнений: с корнями (2), (5), (9), (2; 5), (2; 9), (5; 9).
Составим уравнения с одним корнем — это будут полные квадраты:
Далее составим уравнения с двумя корнями. Используем теорему Виета: коэффициенты приведённого уравнения вычисляются по формулам .
Первое уравнение (2; 5):
Второе уравнение (2; 9):
Третье уравнение (5; 9):
ответ: шёсть приведённых уравнений:
А теперь рассмотрим неприведённые уравнения — в которых коэффициент при не равен единице (и нулю, конечно, поскольку тогда уравнение перестаёт быть квадратным).. Поскольку любое квадратное уравнение можно разложить на множители:
и в этом разложении при любом оно будет иметь те же корни, то таких уравнений можно составить бесконечное количество. Например, если взять уравнение и умножить его на любое число (кроме нуля): — то его корни останутся прежними.
Окончательный ответ: с данными корнями можно создать бесконечное количество неприведённых уравнений.
Пусть x- скорость лодки в стоячей воде y- cкорость течения реки Тогда, x+y -скорость лодки по течению x-y - скорость лодки против течения Тогда, 16/x+y(ч)время за которое проплывает лодка 16 км по течению 16/x-y(ч) 16 км против течения А по условию по течению лодка проплывает на 6 часов быстрее чем против значит можно составить уравнение: 16/x-y -16/x+y =6 Также по условию известно ,что скорость лодки на 2 км больше скорости течения реки Состав им второе уравнение: x-y=2 Пешим полученную систему уравнений : Сперва упрастим первое уравнение избавившись от знаменателя ,получим : 32y=6x^2-6y^2 Затем выразим x из второго уравнения ,получим x=y+2 и подставим в первое: 32y=6*(2+y)^2-6y 32y=24+24y+6y^2-6y^2 8y=24 y=3 X=3+2 X=5 ответ :скорость лодки 5 км/ч скорость реки 3км/ч
Квадратное уравнение может иметь один или два корня. Значит, из трёх чисел можно составить шесть приведённых (см. об этом ниже) уравнений: с корнями (2), (5), (9), (2; 5), (2; 9), (5; 9).
Составим уравнения с одним корнем — это будут полные квадраты:
Далее составим уравнения с двумя корнями. Используем теорему Виета: коэффициенты приведённого уравнения вычисляются по формулам .
Первое уравнение (2; 5):
Второе уравнение (2; 9):
Третье уравнение (5; 9):
ответ: шёсть приведённых уравнений:
А теперь рассмотрим неприведённые уравнения — в которых коэффициент при не равен единице (и нулю, конечно, поскольку тогда уравнение перестаёт быть квадратным).. Поскольку любое квадратное уравнение можно разложить на множители:
и в этом разложении при любом оно будет иметь те же корни, то таких уравнений можно составить бесконечное количество. Например, если взять уравнение и умножить его на любое число (кроме нуля): — то его корни останутся прежними.
Окончательный ответ: с данными корнями можно создать бесконечное количество неприведённых уравнений.