Чтобы привести многочлен к стандартному виду, нужно:
Привести каждый одночлен многочлена к стандартному виду.
Выполнить приведение подобных одночленов.
Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в его запись.
1) 8ху⁴х³-9х³уу⁷+10zz⁵= 8х¹⁺³у⁴ - 9 х³у¹⁺⁷ +10 z¹⁺⁵= 8x⁴y⁴ -9x³y⁸+10z⁶
найдем степень многочлена :
8x⁴y⁴ : 4+4=8
9x³y⁸: 3+8= 11
10z⁶ : 6
Наибольшая степень 11 - это и будет степенью многочлена
2) 0,2а⁵bb⁶ - 1,1xyx⁷+k⁸t²k= 0,2a⁵b⁷ - 1.1x⁸y +k⁹t²
5+7= 12
8+1=9
9+2= 11
Наибольшая степень 12 - это и есть степень многочлена
3)
найдем наибольшую степень :
2+5= 7
8+10=18
16+8=24
Степень многочлена - 24
4)
10+3=13
8+8=16
10
Степень многочлена - 16
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.
Чтобы привести многочлен к стандартному виду, нужно:
Привести каждый одночлен многочлена к стандартному виду.
Выполнить приведение подобных одночленов.
Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в его запись.
1) 8ху⁴х³-9х³уу⁷+10zz⁵= 8х¹⁺³у⁴ - 9 х³у¹⁺⁷ +10 z¹⁺⁵= 8x⁴y⁴ -9x³y⁸+10z⁶
найдем степень многочлена :
8x⁴y⁴ : 4+4=8
9x³y⁸: 3+8= 11
10z⁶ : 6
Наибольшая степень 11 - это и будет степенью многочлена
2) 0,2а⁵bb⁶ - 1,1xyx⁷+k⁸t²k= 0,2a⁵b⁷ - 1.1x⁸y +k⁹t²
найдем степень многочлена :
5+7= 12
8+1=9
9+2= 11
Наибольшая степень 12 - это и есть степень многочлена
3)
найдем наибольшую степень :
2+5= 7
8+10=18
16+8=24
Степень многочлена - 24
4)
найдем наибольшую степень :
10+3=13
8+8=16
10
Степень многочлена - 16
Объяснение:
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.