Пусть длина наименьшей стороны клумбы х м, т.к. вторая сторона длиннее на 5м, то её длина составит (х+5)м. Вокруг клумбы идёт дорожка шириной 1 м, значит длина стороны дорожки составит (1+х+5+1)=(х+7)м - широкая сторона, и меньшая сторона составит (1+х+1)м=(х+2)м. Площадь дорожки составляет 26м² и складывается из площади 4-ч прямоугольников, из которых стороны двух длинных прямоугольников равны по (х+7)м и 1м. Площадь этих прямоугольников равна и составляет S1.2=1×(х+7)м, и 2 прямоугольника со сторонами 1м и (х+2)м, и площади их равны 1×(х+2)м=(х+2)м. Вся площадь дорожки составит 2×(х+7)+2×(х+2)=26. Делим обе части уравнения на 2, получаем:
(х+7)+(х+2)=13
2х+9=13
2х=13-9
2х=4
х=2
Таким образом, наименьшая сторона клумбы равна 2м, тогда наибольшая 2+5=7м.
x+4y=9 |*(-2) => -2x-8y=-18 => x=3
3x+8y=21 |*1 => 3x+8y=21 => y=1,5
Сложив уравнения, получим х=3
ответ: (3; 1,5)
2)
3x+y=264 |*5 => 15x+5y=1320 => x=80
2x-5y=40 |*1 => 2x-5y=40 => y=24
Сложив уравнения, получим 17х=1360 => x=80
ответ: (80; 24)
3) Умножим второе уравнение на 10
x+y=4100 |*(-8) => -8x-8y= -32800 => x=2800
8x+11y=36700 |*1 => 8x+11y=36700 => y=1300
Сложив уравнения, получим 3y=3900 => y=1300
ответ: (2800; 1300)
(х+7)+(х+2)=13
2х+9=13
2х=13-9
2х=4
х=2
Таким образом, наименьшая сторона клумбы равна 2м, тогда наибольшая 2+5=7м.