Область определения функции f(x) - это все значения х, при которых функция существует, то есть, можно найти ее значение. Область определения обозначается D(f).
А) f(x)=37-3x
Это линейная функция. Вместо х можно подставить любое значение и получить у. Значит, функция определена при любом значении х. Ее область определения - вся числовая ось.
ответ: D(f) = R
Б) q(x)=35/x
Это дробно-рациональная функция. Она определена при любом значении х, кроме тех, которые обращают знаменатель в ноль. В данном случае, х не должен равняться нулю. Область определения функции q(x) - вся числовая ось, кроме точки 0.
ответ: D(q)=( - ∞; 0 ) ∪ ( 0; + ∞ )
В) u(x)=x²-7
Это квадратичная функция. Вместо х можно подставить любое значение и получить у. Значит, эта функция также определена при любом значении х, и ее область определения - вся числовая ось.
ответ: D(u) = R
Г) у=√х
Так как подкоренное выражение не может принимать отрицательные значения, то вместо х можно брать лишь положительные числа и число ноль, то есть область определения той функции - множество неотрицательных чисел.
Если осевое сечение конуса - равносторонний треугольник, то в конусе половина образующей равна радиусу основания. Проведем осевое сечение и получившийся треугольник обозначим ABC, где A - вершина конуса. Опустим высоту AH - которая явл. так же медианой и биссектрисой.
BH обозначим r - радиус окружности в основании конуса.
BA тогда будет 2r
Из прямоугольного треугольника ABH:
AH² = BA² - BH²
AH² = 4r² - r²
AH² = 3r²
AH = r√3
Объем конуса V = πr²h/3 (где r - радиус основания, а h - высота)
V = πBH²AH²/3 = πr²r√3/3 = πr³√3/3
Но V так же равно 36.
πr³√3/3 = 36
r³ = 36√3/π
r = ∛(36√3/π)
Вычислим радиус вписанного шара - R
Осевое сечение шара является вписанной окружностью для треугольника в осевом сечении конуса. R этой окружности и R шара - одинаковы.
Так как треугольник ABC равносторонний R = a√3/6 (а - сторона треугольника)
Область определения функции f(x) - это все значения х, при которых функция существует, то есть, можно найти ее значение. Область определения обозначается D(f).
А) f(x)=37-3x
Это линейная функция. Вместо х можно подставить любое значение и получить у. Значит, функция определена при любом значении х. Ее область определения - вся числовая ось.
ответ: D(f) = R
Б) q(x)=35/x
Это дробно-рациональная функция. Она определена при любом значении х, кроме тех, которые обращают знаменатель в ноль. В данном случае, х не должен равняться нулю. Область определения функции q(x) - вся числовая ось, кроме точки 0.
ответ: D(q)=( - ∞; 0 ) ∪ ( 0; + ∞ )
В) u(x)=x²-7
Это квадратичная функция. Вместо х можно подставить любое значение и получить у. Значит, эта функция также определена при любом значении х, и ее область определения - вся числовая ось.
ответ: D(u) = R
Г) у=√х
Так как подкоренное выражение не может принимать отрицательные значения, то вместо х можно брать лишь положительные числа и число ноль, то есть область определения той функции - множество неотрицательных чисел.
ответ: D( f ) = [ 0; +∞ )
Если осевое сечение конуса - равносторонний треугольник, то в конусе половина образующей равна радиусу основания. Проведем осевое сечение и получившийся треугольник обозначим ABC, где A - вершина конуса. Опустим высоту AH - которая явл. так же медианой и биссектрисой.
BH обозначим r - радиус окружности в основании конуса.
BA тогда будет 2r
Из прямоугольного треугольника ABH:
AH² = BA² - BH²
AH² = 4r² - r²
AH² = 3r²
AH = r√3
Объем конуса V = πr²h/3 (где r - радиус основания, а h - высота)
V = πBH²AH²/3 = πr²r√3/3 = πr³√3/3
Но V так же равно 36.
πr³√3/3 = 36
r³ = 36√3/π
r = ∛(36√3/π)
Вычислим радиус вписанного шара - R
Осевое сечение шара является вписанной окружностью для треугольника в осевом сечении конуса. R этой окружности и R шара - одинаковы.
Так как треугольник ABC равносторонний R = a√3/6 (а - сторона треугольника)
Сторона треугольника - 2r = 2∛(36√3/π)
R = ∛(36√3/π)*√3/6
Vшар = 4πR³/3
Vшар = 4π(∛(36√3/π)*√3/6)³/3 = (4π(36√3/π)*3√3/36*6)/3 = 4*36√3*3√3/36*6*3 = 4/2 = 2
ответ: 2