Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
Cos xSin y = 0,175 сложим:
SinxCosy + Cosx Siny = 0,535
Sin(x +y) = 0,535
x + y = (-1)^n arcSin0,535 + nπ аналогично:
x - y = (-1)^k arcSin0,185 + kπ, k ∈Z
2x = (-1)^n arcSin0,535 + nπ+ (-1)^k arcSin0,185+ kπ=
= (-1)^n arcSin0,535 + (-1)^k arcSin0,185+ mπ, m ∈Z
x = (-1)^n·1/2· arcSin0,535 + (-1)^k·1/2· arcSin0,185+ 1/2·mπ, m ∈Z
y =(-1)^n arcSin0,535 + nπ - (-1)^n·1/2· arcSin0,535 - (-1)^k·1/2· arcSin0,185- 1/2·mπ, m ∈Z
2)Sin x Sin y = 3/4
tg xtg y = 3⇒ (SinxSiny)/(CosxCosy) = 3⇒ 3/4(CosxCosy) =3
⇒Cos xCosy = 1/4
теперь наша система:
Sin xSiny = 3/4
Cos xCos y = 1/4 сложим:
Сos(x - y) =1
x-y = 2πn, n ∈Z (теперь вычтем и получим:)
Сos(х + у) = 1/2
x + y = +-√3/2 + 2πk , k ∈Z
теперь наша система:
x-y = 2πn, n ∈Z
x + y = +-√3/2 + 2πk , k ∈Z сложим:
2х = +-√3/2 +2πm, m∈Z
x = +-√3/4 + πm , m∈Z
y = x - 2πn = +-√3/4 + πm -2πn = +-√3/4 +π(m -2n), m,n∈Z